Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 351(3): 663-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25292181

RESUMEN

Skeletal muscle atrophy remains a clinical problem in numerous pathologic conditions. ß2-Adrenergic receptor agonists, such as formoterol, can induce mitochondrial biogenesis (MB) to prevent such atrophy. Additionally, atomoxetine, an FDA-approved norepinephrine reuptake inhibitor, was positive in a cellular assay for MB. We used a mouse model of dexamethasone-induced skeletal muscle atrophy to investigate the potential role of atomoxetine and formoterol to prevent muscle mass loss. Mice were administered dexamethasone once daily in the presence or absence of formoterol (0.3 mg/kg), atomoxetine (0.1 mg/kg), or sterile saline. Animals were euthanized at 8, 16, and 24 hours or 8 days later. Gastrocnemius muscle weights, changes in mRNA and protein expression of peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC-1α) isoforms, ATP synthase ß, cytochrome c oxidase subunit I, NADH dehydrogenase (ubiquinone) 1 ß subcomplex, 8, ND1, insulin-like growth factor 1 (IGF-1), myostatin, muscle Ring-finger protein-1 (muscle atrophy), phosphorylated forkhead box protein O 3a (p-FoxO3a), Akt, mammalian target of rapamycin (mTOR), and ribosomal protein S6 (rp-S6; muscle hypertrophy) in naive and muscle-atrophied mice were measured. Atomoxetine increased p-mTOR 24 hours after treatment in naïve mice, but did not change any other biomarkers. Formoterol robustly activated the PGC-1α-4-IGF1-Akt-mTOR-rp-S6 pathway and increased p-FoxO3a as early as 8 hours and repressed myostatin at 16 hours. In contrast to what was observed with acute treatment, chronic treatment (7 days) with atomoxetine increased p-Akt and p-FoxO3a, and sustained PGC-1α expression and skeletal muscle mass in dexamethasone-treated mice, in a manner comparable to formoterol. In conclusion, chronic treatment with a low dose of atomoxetine prevented dexamethasone-induced skeletal muscle wasting and supports a potential role in preventing muscle atrophy.


Asunto(s)
Dexametasona/toxicidad , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Propilaminas/uso terapéutico , Animales , Clorhidrato de Atomoxetina , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Atrofia Muscular/patología , Propilaminas/farmacología
2.
Cell ; 151(6): 1319-31, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217713

RESUMEN

PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise but has no effects on muscle strength or hypertrophy. We have identified a form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induces IGF1 and represses myostatin, and expression of PGC-1α4 in vitro and in vivo induces robust skeletal muscle hypertrophy. Importantly, mice with skeletal muscle-specific transgenic expression of PGC-1α4 show increased muscle mass and strength and dramatic resistance to the muscle wasting of cancer cachexia. Expression of PGC-1α4 is preferentially induced in mouse and human muscle during resistance exercise. These studies identify a PGC-1α protein that regulates and coordinates factors involved in skeletal muscle hypertrophy.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Entrenamiento de Fuerza , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Adiposidad , Animales , Glucosa/metabolismo , Humanos , Hipertrofia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Miostatina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Isoformas de Proteínas/metabolismo
3.
Nature ; 481(7382): 463-8, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237023

RESUMEN

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Termogénesis , Transactivadores/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hormonas/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Modelos Animales , Células Musculares/metabolismo , Obesidad/sangre , Obesidad/inducido químicamente , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal/fisiología , Plasma/química , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción , Proteína Desacopladora 1
4.
Cell Metab ; 13(2): 160-9, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21284983

RESUMEN

Exercise has been shown to be effective for treating obesity and type 2 diabetes. However, the molecular mechanisms for adaptation to exercise training are not fully understood. Endoplasmic reticulum (ER) stress has been linked to metabolic dysfunction. Here we show that the unfolded protein response (UPR), an adaptive response pathway that maintains ER homeostasis upon luminal stress, is activated in skeletal muscle during exercise and adapts skeletal muscle to exercise training. The transcriptional coactivator PGC-1α, which regulates several exercise-associated aspects of skeletal muscle function, mediates the UPR in myotubes and skeletal muscle through coactivation of ATF6α. Efficient recovery from acute exercise is compromised in ATF6α(-/-) mice. Blocking ER-stress-related cell death via deletion of CHOP partially rescues the exercise intolerance phenotype in muscle-specific PGC-1α KO mice. These findings suggest that modulation of the UPR through PGC1α represents an alternative avenue to improve skeletal muscle function and achieve metabolic benefits.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Músculo Esquelético/metabolismo , Transactivadores/metabolismo , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/genética , Adaptación Fisiológica , Animales , Células Cultivadas , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Transactivadores/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 107(50): 21866-71, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21106753

RESUMEN

The coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) coordinates a broad set of transcriptional programs that regulate the response of skeletal muscle to exercise. However, the complete transcriptional network controlled by PGC-1α has not been described. In this study, we used a qPCR-based screen of all known transcriptional components (Quanttrx) to identify transcription factors that are quantitatively regulated by PGC-1α in cultured skeletal muscle cells. This analysis identified hypoxia-inducible factor 2 α (HIF2α) as a major PGC-1α target in skeletal muscle that is positively regulated by both exercise and ß-adrenergic signaling. This transcriptional regulation of HIF2α is completely dependent on the PGC-1α/ERRα complex and is further modulated by the action of SIRT1. Transcriptional profiling of HIF2α target genes in primary myotubes suggested an unexpected role for HIF2α in the regulation of muscle fiber types, specifically enhancing the expression of a slow twitch gene program. The PGC-1α-mediated switch to slow, oxidative fibers in vitro is dependent on HIF2α, and mice with a muscle-specific knockout of HIF2α increase the expression of genes and proteins characteristic of a fast-twitch fiber-type switch. These data indicate that HIF2α acts downstream of PGC-1α as a key regulator of a muscle fiber-type program and the adaptive response to exercise.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/microbiología , Fibras Musculares Esqueléticas/fisiología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Ejercicio Físico/fisiología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Nitrilos/farmacología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Tiazoles/farmacología , Factores de Transcripción/genética , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
6.
J Pharmacol Exp Ther ; 332(2): 632-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19875674

RESUMEN

Mitochondrial dysfunction is both a cause and target of reactive oxygen species during ischemia-reperfusion, drug, and toxicant injury. After injury, renal proximal tubular cells (RPTC) recover mitochondrial function by increasing the expression of the master regulator of mitochondrial biogenesis, peroxisome-proliferator-activated-receptor-gamma-coactivator-1alpha (PGC-1alpha). The goal of this study was to determine whether 5-hydroxytryptamine (5-HT) receptor agonists increase mitochondrial biogenesis and accelerate the recovery of mitochondrial function. Reverse transcription-polymerase chain reaction analysis confirmed the presence of 5-HT2A, 5-HT2B, and 5-HT2C receptor mRNA in RPTC. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 3-10 microM) increased PGC-1alpha levels, expression of mitochondrial proteins ATP synthase beta and NADH dehydrogenase (ubiquinone) 1beta subcomplex 8 (NDUFB8), MitoTracker Red staining intensity, cellular respiration, and ATP levels through a 5-HT receptor and PGC-1alpha-dependent pathway. Similar effects were observed with the 5-HT2 agonist m-chlorophenylpiperazine and were blocked by the 5-HT2 antagonist 8-[3-(4-fluorophenoxy) propyl]-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one (AMI-193). In addition, DOI accelerated the recovery of mitochondrial function after oxidant-induced injury in RPTC. This is the first report to demonstrate 5-HT receptor-mediated mitochondrial biogenesis, and we suggest that 5-HT-agonists may be effective in the treatment of mitochondrial and cell injury.


Asunto(s)
Anfetaminas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Factores de Transcripción/genética , Animales , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Proteínas de Choque Térmico , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Mitocondrias Musculares , Consumo de Oxígeno , Piperazinas/farmacología , Regiones Promotoras Genéticas , Conejos , Antagonistas de la Serotonina/farmacología , Compuestos de Espiro/farmacología
7.
J Med Chem ; 52(1): 181-8, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19072163

RESUMEN

Calpain 10 has been localized to the mitochondria and is a key mediator of Ca(2+) induced mitochondrial dysfunction. A peptide screen followed by a series of modifications identified the homodisulfide form of CYGAK (CYGAK)(2) as an inhibitor of calpain 10 while showing no inhibitory activity against calpain 1. Methylation or truncation of the N-terminal cysteine significantly reduced the inhibitory activity of (CYGAK)(2) and inhibition was reversed by reducing agents, suggesting that CYGAK forms a disulfide with a cysteine near the active site. Data suggests CYGAK may be a P' calpain inhibitor and may achieve its specificity through this mechanism. CYGAK inhibited calpain activity in intact mitochondria, renal cells, and hepatocytes, prevented Ca(2+) induced cleavage of NDUFV2, and blocked Ca(2+) induced state III dysfunction. (CYGAK)(2) is the first P' specific calpain inhibitor and will be a valuable tool to prevent Ca(2+) induced mitochondrial dysfunction and explore the function of calpain 10.


Asunto(s)
Calpaína/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Secuencia de Aminoácidos , Animales , Calpaína/metabolismo , Línea Celular , Inhibidores Enzimáticos/química , Concentración 50 Inhibidora , Péptidos/química , Péptidos/farmacología , Conejos
8.
Arch Biochem Biophys ; 478(2): 130-5, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18718443

RESUMEN

Peroxisome proliferator activator receptor gamma coactivator 1alpha (PGC-1alpha) is a transcriptional coactivator known to mediate mitochondrial biogenesis. Whereas PGC-1alpha transcription is regulated by a variety of signaling cascades, the mechanisms of PGC-1alpha degradation have received less investigation. Thus, we investigated the mechanisms responsible for PGC-1alpha degradation in renal proximal tubular cells (RPTC). Amino acid sequence analysis of the PGC-1alpha protein revealed three PEST sequence-rich regions, predictive of proteolysis by calpains and/or the proteasome. Under basal conditions, treatment with the protein synthesis inhibitor cycloheximide resulted in rapid degradation of PGC-1alpha (t(1/2)=38 min), which was blocked by the proteasome inhibitor epoxomicin, but not the calpain inhibitor calpeptin. Oxidant exposure resulted in the degradation of both endogenous and adenovirally over-expressed PGC-1alpha, which was inhibited by calpeptin but not epoxomicin. Thapsigargin-induced release of ER Ca(2+) also stimulated calpain-dependent, epoxomicin-independent degradation of PGC-1alpha. Finally, Ca(2+) addition to lysates of RPTC over-expressing PGC-1alpha resulted in calpeptin-sensitive, epoxomicin-insensitive degradation of PGC-1alpha. In summary, we suggest two distinct mechanisms regulate PGC-1alpha: basal PGC-1alpha turnover by proteasome degradation and oxidant- and Ca(2+)-mediated PGC-1alpha degradation through calpain.


Asunto(s)
Calpaína/metabolismo , PPAR gamma/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Calpaína/antagonistas & inhibidores , Células Cultivadas , Técnicas In Vitro , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Oxidantes/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transactivadores/química , Transactivadores/genética
9.
J Pharmacol Exp Ther ; 325(2): 536-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18267976

RESUMEN

Mitochondrial damage is often both the cause and outcome of cell injury resulting from a variety of toxic insults, hypoxia, or trauma. Increasing mitochondrial biogenesis after renal proximal tubular cell (RPTC) injury accelerated the recovery of mitochondrial and cellular functions (Biochem Biophys Res Commun 355:734-739, 2007). However, few pharmacological agents are known to increase mitochondrial biogenesis. We report that daidzein, genistein, biochanin A, formononetin, 3-(2',4'-dichlorophenyl)-7-hydroxy-4H-chromen-4-one (DCHC), 7-hydroxy-4H-chromen-4-one (7-C), 4'7-dimethoxyisoflavone (4',7-D), and 5,7,4'-trimethoxyisoflavone (5,7,4'-T) increased peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha expression and resulted in mitochondrial biogenesis as indicated by increased expression of ATP synthase beta and ND6, and 1.5-fold increases in respiration and ATP in RPTC. Inhibition of estrogen receptors with ICI182780 (fulvestrant) had no effect on daidzein-induced mitochondrial biogenesis. The isoflavone derivatives showed differential effects on the activation and expression of sirtuin (SIRT)1, a deacetylase and activator of PGC-1alpha. Daidzein and formononetin induced the expression of SIRT1 in RPTC and the activation of recombinant SIRT1, whereas DCHC and 7-C only induced the activation of recombinant SIRT1. In contrast, genistein, biochanin A, 4',7-D, and 5,7,4'-T only increased SIRT1 expression in RPTC. We have identified a series of substituted isoflavones that produce mitochondrial biogenesis through PGC1alpha and increased SIRT1 activity and/or expression, independently of the estrogen receptor. Furthermore, different structural components are responsible for the activities of isoflavones: the hydroxyl group at position 7 is required SIRT1 activation, a hydroxyl group at position 5 blocks SIRT1 activation, and the loss of the phenyl ring at position 3 or the 4'-hydroxy or -methoxy substituent blocks increased SIRT1 expression.


Asunto(s)
Isoflavonas/farmacología , Túbulos Renales Proximales/citología , Mitocondrias/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Consumo de Oxígeno , Proteínas de Unión al ARN/metabolismo , Conejos , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo
10.
Biochem Biophys Res Commun ; 355(3): 734-9, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17307137

RESUMEN

Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGC-1alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions.


Asunto(s)
Apoptosis , Mitocondrias/fisiología , Estrés Oxidativo , PPAR gamma/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Peróxido de Hidrógeno/toxicidad , Transporte Iónico , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , PPAR gamma/genética , Conejos , Sodio/metabolismo
11.
J Biol Chem ; 282(4): 2355-62, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17116659

RESUMEN

Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathway of mitochondrial biogenesis following oxidant injury has not been examined. A 10-fold overexpression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1alpha (PGC-1alpha) in control RPTCs resulted in a 52% increase in mitochondrial number, a 27% increase in respiratory capacity, and a 30% increase in mitochondrial protein markers, demonstrating that PGC-1alpha mediates mitochondrial biogenesis in RPTCs. RPTCs sublethally injured with TBHP exhibited a 50% decrease in mitochondrial function and increased mitochondrial autophagy. Compared with the controls, PGC-1alpha levels increased 12-fold on days 1, 2, and 3 post-injury and returned to base line on day 4 as mitochondrial function returned. Inhibition p38 MAPK blocked the up-regulation of PGC-1alpha following oxidant injury, whereas inhibition of calcium-calmodulin-dependent protein kinase, calcineurin A, nitric-oxide synthase, and phosphoinositol 3-kinase had no effect. The epidermal growth factor receptor (EGFR) was activated following TBHP exposure, and the EGFR inhibitor AG1478 blocked the up-regulation of PGC-1alpha. Additional inhibitor studies revealed that the sequential activation of Src, p38 MAPK, EGFR, and p38 MAPK regulate the expression of PGC-1alpha following oxidant injury. In contrast, although Akt was activated following oxidant injury, it did not play a role in PGC-1alpha expression. We suggest that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1alpha.


Asunto(s)
Túbulos Renales Proximales/fisiología , Mitocondrias/fisiología , Regeneración , Factores de Transcripción/fisiología , Animales , Células Cultivadas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/fisiología , Femenino , Oxidantes , Estrés Oxidativo/fisiología , Quinazolinas , Conejos , Regeneración/efectos de los fármacos , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología , terc-Butilhidroperóxido/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA