Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 11(1): 419, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354048

RESUMEN

Glutamate (Glu) and gamma-aminobutyric acid (GABA) are implicated in the pathophysiology of major depressive disorder (MDD). GABA levels or GABAergic interneuron numbers are generally low in MDD, potentially disinhibiting Glu release. It is unclear whether Glu release or turnover is increased in depression. Conversely, a meta-analysis of prefrontal proton magnetic resonance spectroscopy (1H MRS) studies in MDD finds low Glx (combination of glutamate and glutamine) in medicated MDD. We hypothesize that elevated Glx or Glu may be a marker of more severe, untreated MDD. We examined ventromedial prefrontal cortex/anterior cingulate cortex (vmPFC/ACC) Glx and glutamate levels using 1H MRS in 34 medication-free, symptomatic, chronically ill MDD patients and 32 healthy volunteers, and GABA levels in a subsample. Elevated Glx and Glu were observed in MDD compared with healthy volunteers, with the highest levels seen in males with MDD. vmPFC/ACC GABA was low in MDD. Higher Glx levels correlated with more severe depression and lower GABA. MDD severity and diagnosis were both linked to higher Glx in vmPFC/ACC. Low GABA in a subset of these patients is consistent with our hypothesized model of low GABA leading to glutamate disinhibition in MDD. This finding and model are consistent with our previously reported findings that the NMDAR-antagonist antidepressant effect is proportional to the reduction of vmPFC/ACC Glx or Glu levels.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Ácido Glutámico , Giro del Cíngulo/diagnóstico por imagen , Humanos , Masculino , Corteza Prefrontal/diagnóstico por imagen , Ácido gamma-Aminobutírico
2.
JAMA Netw Open ; 3(8): e2013211, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32785636

RESUMEN

Importance: A single subanesthetic dose of ketamine produces an antidepressant response in patients with major depressive disorder (MDD) within hours, but the mechanism of antidepressant effect is uncertain. Objective: To evaluate whether ketamine dose and brain glutamate and glutamine (Glx) and γ-aminobutyric acid (GABA) level responses to ketamine are related to antidepressant benefit and adverse effects. Design, Setting, and Participants: This randomized, parallel-group, triple-masked clinical trial included 38 physically healthy, psychotropic medication-free adult outpatients who were in a major depressive episode of MDD but not actively suicidal. The trial was conducted at Columbia University Medical Center. Data were collected from February 2012 to May 2015. Data analysis was conducted from January to March 2020. Intervention: Participants received 1 dose of placebo or ketamine (0.1, 0.2, 0.3, 0.4, or 0.5 mg/kg) intravenously during 40 minutes of a proton magnetic resonance spectroscopy scan that measured ventro-medial prefrontal cortex Glx and GABA levels in 13-minute data frames. Main Outcomes and Measures: Clinical improvement was measured using a 22-item version of the Hamilton Depression Rating Scale (HDRS-22) 24 hours after ketamine was administered. Ketamine and metabolite blood levels were measured after the scan. Results: A total of 38 individuals participated in the study, with a mean (SD) age of 38.6 (11.2) years, 23 (60.5%) women, and 25 (65.8%) White patients. Improvement in HDRS-22 score at 24 hours correlated positively with ketamine dose (t36 = 2.81; P = .008; slope estimate, 19.80 [95% CI, 5.49 to 34.11]) and blood level (t36 = 2.25; P = .03; slope estimate, 0.070 [95% CI, 0.007 to 0.133]). The lower the Glx response, the better the antidepressant response (t33 = -2.400; P = .02; slope estimate, -9.85 [95% CI, -18.2 to -1.50]). Although GABA levels correlated with Glx (t33 = 8.117; P < .001; slope estimate, 0.510 [95% CI, 0.382 to 0.638]), GABA response did not correlate with antidepressant effect. When both ketamine dose and Glx response were included in a mediation analysis model, ketamine dose was no longer associated with antidepressant effect, indicating that Glx response mediated the relationship. Adverse effects were related to blood levels in men only (t5 = 2.606; P = .048; estimated slope, 0.093 [95% CI, 0.001 to 0.186]), but Glx and GABA response were not related to adverse effects. Conclusions and Relevance: In this study, intravenous ketamine dose and blood levels correlated positively with antidepressant response. The Glx response correlated inversely with ketamine dose and with antidepressant effect. Future studies are needed to determine whether the relationship between Glx level and antidepressant effect is due to glutamate or glutamine. Trial Registration: ClinicalTrials.gov Identifier: NCT01558063.


Asunto(s)
Antidepresivos/administración & dosificación , Trastorno Depresivo Mayor , Ácido Glutámico/metabolismo , Ketamina/administración & dosificación , Ácido gamma-Aminobutírico/metabolismo , Adulto , Antidepresivos/efectos adversos , Antidepresivos/farmacocinética , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Ketamina/efectos adversos , Ketamina/farmacocinética , Ketamina/uso terapéutico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo
3.
Psychiatry Res Neuroimaging ; 276: 15-23, 2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-29702461

RESUMEN

Higher serotonin-1A (5-HT1A) receptor binding potential (BPF) has been found in major depressive disorder (MDD) during and between major depressive episodes. We investigated whether higher 5-HT1A binding is a biologic trait transmitted to healthy high risk (HR) offspring of MDD probands. Data were collected contemporaneously from: nine HR, 30 depressed not-recently medicated (NRM) MDD, 18 remitted NRM MDD, 51 healthy volunteer (HV) subjects. Subjects underwent positron emission tomography (PET) using [11C]WAY100635 to quantify 5-HT1A BPF, estimated using metabolite, free fraction-corrected arterial input function and cerebellar white matter as reference region. Multivoxel pattern analyses (MVPA) of PET data evaluated group status classification of individuals. When tested across 13 regions of interest, an effect of diagnosis is found on BPF which remains significant after correction for sex, age, injected mass and dose: HR have higher BPF than HV (84.3% higher in midbrain raphe, 40.8% higher in hippocampus, mean BPF across all 13 brain regions is 49.9% ±â€¯11.8% higher). Voxel-level BPF maps distinguish HR vs. HV. Elevated 5-HT1A BPF appears to be a familially transmitted trait abnormality. Future studies are needed to replicate this finding in a larger cohort and demonstrate the link to the familial transmission of mood disorders.


Asunto(s)
Encéfalo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Endofenotipos/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Adulto , Autorreceptores , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Estudios de Cohortes , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Aprendizaje Automático , Masculino , Núcleos del Rafe Mesencefálico/diagnóstico por imagen , Núcleos del Rafe Mesencefálico/metabolismo , Persona de Mediana Edad , Proyectos Piloto , Tomografía de Emisión de Positrones , Unión Proteica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...