Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38594844

RESUMEN

BACKGROUND: Most published reports on SAMD9L-related ataxia-pancytopenia syndrome (ATXPC) have emphasized the hematologic findings. Fewer details are known about the progression of neurologic manifestations and methods for monitoring them. CASES: We present six individuals from two families transmitting a heterozygous variant in SAMD9L, exhibiting clinical variations in their hematologic and neurologic findings. Serial motor function testing was used to monitor motor proficiency over a 2 to 3 year period in the proband and his father from Family 1. CONCLUSIONS: Our case series focuses on the neurologic progression in patients with heterozygous variants in SAMD9L. Patients with ATXPC should be followed to evaluate a wide range of neurologic manifestations. Serial motor function testing using a standardized method is helpful to track changes in balance and coordination in children and adults with ATXPC and could aid in a future extended natural history study.

2.
Brain ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226698

RESUMEN

Loss-of-function variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are responsible for a spectrum of neurodegenerative disorders. In the homozygous state, they cause severe pathologies with early onset dementia, such as Nasu-Hakola disease (NHD) and behavioral variants of frontotemporal dementia (FTD), whereas heterozygous variants increase the risk of late-onset Alzheimer's disease (AD) and FTD. For over half of TREM2 variants found in families with recessive early onset dementia, the defect occurs at the transcript level via premature termination codons or aberrant splicing. The remaining variants are missense alterations thought to affect the protein; however, the underlying pathogenic mechanism is less clear. In this work, we tested whether these disease-associated TREM2 variants contribute to the pathology via altered splicing. Variants scored by SpliceAI algorithm were tested by a full-size TREM2 splicing reporter assay in different cell lines. The effect of variants was quantified by qRT-/RT-PCR and western blots. Nanostring nCounter was used to measure TREM2 RNA in the brains of NHD patients who carried spliceogenic variants. Exon skipping events were analyzed from brain RNA-Seq datasets available through the Accelerating Medicines Partnership for Alzheimer's Disease Consortium (AMP-AD). We found that for some NHD and early onset FTD-causing variants, splicing defects were the primary cause (D134G) or likely contributor to pathogenicity (V126G and K186N). Similar but milder effects on splicing of exons 2 and 3 were demonstrated for A130V, L133L and R136W enriched in patients with dementia. Moreover, the two most frequent missense variants associated with AD/FTD risk in European and African ancestries (R62H, 1% in Caucasians, and T96K, 12% in Africans) had splicing defects via excessive skipping of exon 2 and overproduction of a potentially antagonistic TREM2 protein isoform. The effect of R62H on exon 2 skipping was confirmed in three independent brain RNA-seq datasets. Our findings revealed an unanticipated complexity of pathogenic variation in TREM2, in which effects on post-transcriptional gene regulation and protein function often coexist. This necessitates the inclusion of computational and experimental analyses of splicing and mRNA processing for a better understanding of genetic variation in disease.

3.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37560121

RESUMEN

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

4.
J Neurol Sci ; 452: 120763, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598468

RESUMEN

BACKGROUND: NOTCH3 is the causative gene for autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL) which is associated with both stroke and dementia. When CADASIL presents primarily as dementia it can be difficult to distinguish from Alzheimer's disease (AD) at both the clinical and neuropathological levels. METHODS: We performed exome sequencing of several affected individuals from a large family affected with AD. PCR amplification and direct Sanger sequencing were used to verify variants detected by exome analysis and to screen family members at-risk to carry those variants. Neuropathologic brain evaluation by immunohistochemistry and MRI were performed for the carriers of the NOTCH3 variant. RESULTS: In a three-generation family with AD, we found a c.601 T > C p.Cys201Arg variant in the NOTCH3 gene that caused clinical and neuropathological manifestations of CADASIL. These features included earlier onset of dementia accompanied by behavioral abnormalities in the father and son and white matter abnormalities in the asymptomatic grandson. The family is one branch of a large pedigree studied by the Alzheimer's Disease Sequencing Project (ADSP). As part of the ADSP linkage analysis and whole genome sequencing endeavor, an ABCA1 variant, p.Ala937Val, was previously found associated with AD in this pedigree. CONCLUSIONS: Our findings, together with other reported pathogenic missense variants of the C201 codon in NOTCH3, support the role of cysteine 201 as a mutation hotspot for CADASIL and highlight the genetic complexity both clinically and pathologically of AD and related dementia.


Asunto(s)
Enfermedad de Alzheimer , CADASIL , Demencia Vascular , Leucoencefalopatías , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , CADASIL/complicaciones , CADASIL/diagnóstico por imagen , CADASIL/genética , Infarto Cerebral , Receptor Notch3/genética
5.
Ann Clin Transl Neurol ; 10(6): 1046-1053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37194416

RESUMEN

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.


Asunto(s)
Epilepsia , Síndromes Epilépticos , Microcefalia , Humanos , Niño , Epilepsia/genética , Heterocigoto , Serina/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo
6.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115208

RESUMEN

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Adulto , Humanos , Microglía/metabolismo , Metabolismo de los Lípidos/genética , Mutación con Pérdida de Función , Mutación/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptor de Prorenina
7.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909570

RESUMEN

This exploratory study tested and validated the use of data fusion and machine learning techniques to probe high-throughput omics and clinical data with a goal of exploring the etiology of developmental dyslexia. Developmental dyslexia is the leading learning disability in school aged children affecting roughly 5-10% of the US population. The complex biological and neurological phenotype of this life altering disability complicates its diagnosis. Phenome, exome, and metabolome data was collected allowing us to fully explore this system from a behavioral, cellular, and molecular point of view. This study provides a proof of concept showing that data fusion and ensemble learning techniques can outperform traditional machine learning techniques when provided small and complex multi-omics and clinical datasets. Heterogenous stacking classifiers consisting of single-omic experts/models achieved an accuracy of 86%, F1 score of 0.89, and AUC value of 0.83. Ensemble methods also provided a ranked list of important features that suggests exome single nucleotide polymorphisms found in the thalamus and cerebellum could be potential biomarkers for developmental dyslexia and heavily influenced the classification of DD within our machine learning models.

8.
Sci Signal ; 15(753): eabk1147, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36166510

RESUMEN

Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.


Asunto(s)
Diglicéridos , Ataxias Espinocerebelosas , Animales , Diglicéridos/metabolismo , Humanos , Ratones , Mutación , Proteína Quinasa C , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/genética
9.
Parkinsonism Relat Disord ; 101: 31-38, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779466

RESUMEN

BACKGROUND: Mutations that alter splicing of X-linked ATP6AP2 cause a spectrum of neurodevelopmental and neurodegenerative pathologies including parkinsonism in affected males. All previously reported splicing mutations increase the level of a minor isoform with skipped exon 4 (Δe4) that encodes a functionally deficient protein. OBJECTIVES: We investigated the pathogenic mechanism of a novel c.168+6T>A variant reported in a family with X-linked intellectual disability, epilepsy, and parkinsonism. We also analyzed ATP6AP2 splicing defects in brains of carriers of a c.345C>T variant associated with X-linked spasticity and parkinsonism. METHODS: We generated induced pluripotent stem cells from patients with c.168+6T>A, reprogrammed them to neural progenitor cells and analyzed them by RNA-Seq and qRT-PCR. We also quantified ATP6AP2 isoforms in the brains of c.345C>T carriers by Nanostring nCounter. RESULTS: The c.168+6T>A increased skipping of ATP6AP2 exon 2 and usage of cryptic intronic donor splice sites. This results in out-of-frame splicing products and a reciprocal 50% reduction in functional full-length ATP6AP2 transcripts. Neural progenitors of patients with c.168+6T>A exhibited downregulated neural development gene networks. Analysis of blood transcriptomes of c.168+6T>A carriers identified potential biomarkers of ATP6AP2 deficiency in non-neural tissues. The c.345C>T variant increased exon 4 skipping with concomitant decrease of full length ATP6AP2 in brains of carriers. CONCLUSION: A common pathogenic consequence of splicing mutations affecting inclusion of different ATP6AP2 exons is reduction of the functional full-length transcript. The exacerbated ATP6AP2 splicing defect in brains of c.345C>T carriers is consistent with their CNS-restricted clinical presentations.


Asunto(s)
Trastornos Parkinsonianos , Receptores de Superficie Celular , ATPasas de Translocación de Protón Vacuolares , Exones , Dosificación de Gen , Humanos , Masculino , Mutación , Trastornos Parkinsonianos/genética , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética
10.
Arch Clin Neuropsychol ; 37(1): 217-225, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33893476

RESUMEN

OBJECTIVE: Familial idiopathic basal ganglia calcification (FIBGC) is a rare, heritable disease characterized by calcium deposition in the basal ganglia and other brain regions. Clinical presentations are diverse, featuring an array of neurologic, psychiatric, and/or cognitive symptoms. This dyad report presents neurogenetic, neuroimaging, neurological, and serial neuropsychological data from a father (S1) and son (S2) with FIBGC. METHOD/RESULTS: The SLC20A2 genetic mutation c.1828-1831delTCCC was identified for each patient, both of whom evidenced similar patterns of brain calcification mainly in the basal ganglia and cerebellum on neuroimaging. S1's onset was in his late 60s with primary motor abnormalities followed by cognitive decline; S2's younger onset (late 30s) was characterized by predominant psychiatric symptoms and mild cognitive changes. Our unique, detailed longitudinal study revealed that both subjects demonstrated largely stable performance across most neuropsychological domains assessed. CONCLUSIONS: The subjects' differences in presentation demonstrate the variable expressivity in FIBGC even with the same pathogenic variant within a single family. Distinct phenotypes may be associated with age of onset even in persons with the same mutation, consistent with past research. Disease progression may feature an initial period of notable change from baseline followed by relative stability, as seen both on imaging and neuropsychological evaluation.


Asunto(s)
Padre , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III , Enfermedades de los Ganglios Basales , Calcinosis , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Masculino , Enfermedades Neurodegenerativas , Pruebas Neuropsicológicas , Núcleo Familiar
11.
J Leukoc Biol ; 110(5): 829-837, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061398

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is an immunoglobulin-like receptor expressed by certain myeloid cells, such as macrophages, dendritic cells, osteoclasts, and microglia. In the brain, TREM2 plays an important role in the immune function of microglia, and its dysfunction is linked to various neurodegenerative conditions in humans. Ablation of TREM2 or its adaptor protein TYROBP causes polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (also known as Nasu-Hakola disorder) with early onset of dementia, whereas some missense variants in TREM2 are associated with an increased risk of late-onset Alzheimer's disease. The human TREM2 gene is subject to alternative splicing, and its major, full-length canonic transcript encompasses 5 exons. Herein, we report a novel alternatively spliced TREM2 isoform without exon 2 (Δe2), which constitutes a sizable fraction of TREM2 transcripts and has highly variable inter-individual expression in the human brain (average frequency 10%; range 3.7-35%). The protein encoded by Δe2 lacks a V-set immunoglobulin domain from its extracellular part but retains its transmembrane and cytoplasmic domains. We demonstrated Δe2 protein expression in TREM2-positive THP-1 cells, in which the expression of full-length transcript was precluded by CRISPR/Cas9 disruption of the exon 2 coding frame. Similar to the full-length TREM2, Δe2 is sorted to the plasma membrane and is subject to receptor shedding. In "add-back" experiments, Δe2 TREM2 had diminished capacity to restore phagocytosis of amyloid beta peptide and promote IFN-I response as compared to full-length TREM2. Our findings suggest that changes in the balance of two mutually exclusive TREM2 isoforms may modify the dosage of full-length transcript potentially weakening some TREM2 receptor functions in the human brain.


Asunto(s)
Empalme Alternativo/fisiología , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Humanos , Dominios de Inmunoglobulinas , Fagocitosis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Front Immunol ; 11: 559342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101276

RESUMEN

The R47H variant in the microglial triggering receptor expressed on myeloid cell 2 (TREM2) receptor is a strong risk factor for Alzheimer's disease (AD). To characterize processes affected by R47H, we performed an integrative network analysis of genes expressed in brains of AD patients with R47H, sporadic AD without the variant, and patients with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), systemic disease with early-onset dementia caused by loss-of-function mutations in TREM2 or its adaptor TYRO protein tyrosine kinase-binding protein (TYROBP). Although sporadic AD had few perturbed microglial and immune genes, TREM2 R47H AD demonstrated upregulation of interferon type I response and pro-inflammatory cytokines accompanied by induction of NKG2D stress ligands. In contrast, PLOSL had distinct sets of highly perturbed immune and microglial genes that included inflammatory mediators, immune signaling, cell adhesion, and phagocytosis. TREM2 knockout (KO) in THP1, a human myeloid cell line that constitutively expresses the TREM2- TYROBP receptor, inhibited response to the viral RNA mimetic poly(I:C) and phagocytosis of amyloid-beta oligomers; overexpression of ectopic TREM2 restored these functions. Compared with wild-type protein, R47H TREM2 had a higher stimulatory effect on the interferon type I response signature. Our findings point to a role of the TREM2 receptor in the control of the interferon type I response in myeloid cells and provide insight regarding the contribution of R47H TREM2 to AD pathology.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Inmunidad , Glicoproteínas de Membrana/genética , Mutación , Receptores Inmunológicos/genética , Alelos , Enfermedad de Alzheimer/patología , Sustitución de Aminoácidos , Biomarcadores , Biopsia , Encéfalo/patología , Línea Celular , Biología Computacional/métodos , Citocinas/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Mutación con Pérdida de Función , Glicoproteínas de Membrana/metabolismo , Fagocitosis/genética , Fagocitosis/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal
13.
Neuromuscul Disord ; 30(7): 572-575, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32600828

RESUMEN

Distal hereditary motor neuropathy (dHMN) is an inherited neuromuscular disease characterized by symmetric distal weakness and atrophy without sensory changes. There are about thirty known genes associated with dHMN, but together they explain only about a third of cases. Mutations in the sigma non-opioid intracellular receptor 1 gene (SIGMAR1) has been linked to autosomal recessive dHMN with pyramidal signs in several families. This phenotype can mimic amyotrophic lateral sclerosis (ALS). We report a 39-year-old man who was referred to our ALS clinic with distal motor weakness and hyperreflexia. Whole exome sequencing identified two novel variants in the SIGMAR1 gene in the proband. Targeted Sanger sequencing of asymptomatic family members confirmed that each carried one of these two variants. Our findings expand the number of known SIGMAR1 pathogenic variants associated with dHMN, which should be clinically distinguished from ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutación/genética , Receptores sigma/genética , Adulto , Diagnóstico Diferencial , Familia , Predisposición Genética a la Enfermedad , Humanos , Masculino , Linaje , Fenotipo , Receptor Sigma-1
14.
Neurol Genet ; 6(2): 1-13, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32211513

RESUMEN

OBJECTIVE: To identify the genetic cause of autosomal dominant ataxia complicated by behavioral abnormalities, cognitive decline, and autism in 2 families and to characterize brain neuropathologic signatures of dominant STUB1-related ataxia and investigate the effects of pathogenic variants on STUB1 localization. METHODS: Clinical and research-based exome sequencing was used to identify the causative variants for autosomal dominant ataxia in 2 families. Gross and microscopic neuropathologic evaluations were performed on the brains of 4 affected individuals in these families. RESULTS: Mutations in STUB1 have been primarily associated with childhood-onset autosomal recessive ataxia, but here we report heterozygous missense variants in STUB1 (p.Ile53Thr and p.The37Leu) confirming the recent reports of autosomal dominant inheritance. Cerebellar atrophy on imaging and cognitive deficits often preceded ataxia. Unique neuropathologic examination of the 4 brains showed the marked loss of Purkinje cells (PCs) without microscopic evidence of significant pathology outside the cerebellum. The normal pattern of polarized somatodendritic STUB1 protein expression in PCs was lost, resulting in aberrant STUB1 localization in the distal PC dendritic arbors. CONCLUSIONS: This study confirms a dominant inheritance pattern in STUB1-ataxia in addition to a recessive one and documents its association with cognitive and behavioral disability, including autism. In the most extensive analysis of cerebellar pathology in this disease, we demonstrate disruption of STUB1 protein in PCs as part of the underlying pathogenesis.

15.
Mov Disord Clin Pract ; 7(1): 70-77, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31970214

RESUMEN

BACKGROUND: Adenylate cyclase 5 (ADCY5)-related dyskinesia is a childhood-onset movement disorder. Manifestations vary in frequency and severity and may include chorea, tremor, dystonia, facial twitches, myoclonus, axial hypotonia, and limb hypertonia. Psychosis is likely part of the broader spectrum. ADCY5 is widely expressed in the brain, especially in the striatum. Previous reports of brain autopsies of 2 subjects with likely ADCY5-dyskinesia were limited by the absence of a molecular diagnosis. In 1 case, normal gross pathology was reported. In the other case, ADCY5 expression was not examined and neuropathological findings were confounded by age and comorbidities. OBJECTIVES: To examine ADCY5 expression and neuropathological changes in ADCY5-dyskinesia. METHODS: An extensive brain autopsy, including immunohistochemical analyses with antibodies to paired helical filament tau, α-synuclein, amyloid-ß, microtubule-associated protein 2, and ADCY5, was performed. RESULTS: The patient, with a p.M1029K ADCY5 variant, had severe dyskinesias from early childhood, later recurrent episodes of psychosis, and died at age 46. Gross pathology was unremarkable, but we detected increased immunoreactivity for ADCY5 in neurons in multiple brain regions. Despite no history of brain trauma to suggest chronic traumatic encephalopathy, we found tau deposits in the deep cortical sulci, midbrain, and hippocampus with minimal amyloid pathology and no Lewy bodies. CONCLUSIONS: We present the first brain autopsy findings in a molecularly proven case of ADCY5-dyskinesia, showing increased ADCY5 immunoreactivity in neurons and evidence of tau deposition. Additional patients will need to be studied to determine whether increased immunoreactivity for ADCY5 is a signature for ADCY5-dyskinesia and whether this disease has a tauopathy component.

16.
Mov Disord Clin Pract ; 6(7): 512-520, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31538084

RESUMEN

BACKGROUND: The phenotypic spectrum of adenylyl cyclase 5 (ADCY5)-related disease has expanded considerably since the first description of the disorder in 1978 as familial essential chorea in a multiplex family. OBJECTIVE: To examine recent advances in the understanding of ADCY5-related dyskinesia and outline a diagnostic approach to enhance clinical detection. METHODS: A pragmatic review of the ADCY5 literature was undertaken to examine unique genetic and pathophysiological features as well as distinguishing clinical features. RESULTS: With over 70 cases reported to date, the phenotype is recognized to be broad, although distinctive features include prominent facial dyskinesia, motor exacerbations during drowsiness or sleep arousal, episodic painful dystonic posturing increased with stress or illness, and axial hypotonia with delayed developmental milestones. Uncommon phenotypes include childhood-onset chorea, myoclonus-dystonia, isolated nongeneralized dystonia, and alternating hemiplegia. CONCLUSION: The ongoing expansion in clinical features suggests that ADCY5 remains underdiagnosed and may account for a proportion of "idiopathic" hyperkinetic movement disorders. Enhanced understanding of its clinical features may help clinicians improve the detection of complex or uncommon cases.

17.
Transl Psychiatry ; 9(1): 4, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30664616

RESUMEN

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. Although next-generation sequencing (NGS) technologies have been successfully applied to gene identification in de novo ASD, the genetic architecture of familial ASD remains largely unexplored. Our approach, which leverages the high specificity and sensitivity of NGS technology, has focused on rare variants in familial autism. We used NGS exome sequencing in 26 families with distantly related affected individuals to identify genes with private gene disrupting and missense variants of interest (VOI). We found that the genes carrying VOIs were enriched for biological processes related to cell projection organization and neuron development, which is consistent with the neurodevelopmental hypothesis of ASD. For a subset of genes carrying VOIs, we then used targeted NGS sequencing and gene-based variant burden case-control analysis to test for association with ASD. Missense variants in one gene, CEP41, associated significantly with ASD (p = 6.185e-05). Homozygous gene-disrupting variants in CEP41 were initially found to be responsible for recessive Joubert syndrome. Using a zebrafish model, we evaluated the mechanism by which the CEP41 variants might contribute to ASD. We found that CEP41 missense variants affect development of the axonal tract, cranial neural crest migration and social behavior phenotype. Our work demonstrates the involvement of CEP41 heterozygous missense variants in ASD and that biological processes involved in cell projection organization and neuron development are enriched in ASD families we have studied.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Mutación Missense , Proteínas/genética , Animales , Conducta Animal , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Exoma , Salud de la Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Secuenciación del Exoma , Pez Cebra
18.
Muscle Nerve ; 57(5): 859-862, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29236290

RESUMEN

INTRODUCTION: Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS: Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS: There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION: The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.


Asunto(s)
Regiones no Traducidas 3'/genética , Enfermedad de Charcot-Marie-Tooth/genética , Conexinas/genética , Salud de la Familia , Mutación/genética , Adolescente , Adulto , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Femenino , Perfilación de la Expresión Génica , Pruebas Genéticas , Genotipo , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína beta1 de Unión Comunicante
19.
J Exp Med ; 214(12): 3707-3729, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29127204

RESUMEN

The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/genética , Genes Ligados a X , Proteínas de la Membrana/genética , Mutación/genética , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Sanguíneas/metabolismo , Encéfalo/embriología , Encéfalo/patología , Cutis Laxo/complicaciones , Cutis Laxo/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Fibroblastos/patología , Glicosilación , Humanos , Lactante , Lípidos/química , Hígado/patología , Hepatopatías/complicaciones , Hepatopatías/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/metabolismo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/patología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/deficiencia , Adulto Joven
20.
PLoS One ; 12(10): e0185777, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28985224

RESUMEN

The accumulation of amyloid beta (Aß) peptide (Amyloid cascade hypothesis), an APP protein cleavage product, is a leading hypothesis in the etiology of Alzheimer's disease (AD). In order to identify additional AD risk genes, we performed targeted sequencing and rare variant burden association study for nine candidate genes involved in the amyloid metabolism in 1886 AD cases and 1700 controls. We identified a significant variant burden association for the gene encoding caspase-8, CASP8 (p = 8.6x10-5). For two CASP8 variants, p.K148R and p.I298V, the association remained significant in a combined sample of 10,820 cases and 8,881 controls. For both variants we performed bioinformatics structural, expression and enzymatic activity studies and obtained evidence for loss of function effects. In addition to their role in amyloid processing, caspase-8 and its downstream effector caspase-3 are involved in synaptic plasticity, learning, memory and control of microglia pro-inflammatory activation and associated neurotoxicity, indicating additional mechanisms that might contribute to AD. As caspase inhibition has been proposed as a mechanism for AD treatment, our finding that AD-associated CASP8 variants reduce caspase function calls for caution and is an impetus for further studies on the role of caspases in AD and other neurodegenerative diseases.


Asunto(s)
Alelos , Enfermedad de Alzheimer/genética , Caspasa 8/genética , Variación Genética , Enfermedad de Alzheimer/metabolismo , Estudios de Casos y Controles , Caspasa 8/metabolismo , Línea Celular Tumoral , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...