Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32385083

RESUMEN

The Phaeobacter genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many in vitro trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture. Hence, the purpose of this study was to investigate how the addition of a TDA-producing Phaeobacter inhibens strain affects the microbiomes of live feed organisms and fish larvae. We used 16S rRNA gene sequencing to characterize the bacterial diversity associated with live feed microalgae (Tetraselmis suecica), live feed copepod nauplii (Acartia tonsa), and turbot (Scophthalmus maximus) eggs/larvae. The microbial communities were unique to the three organisms investigated, and the addition of the probiotic bacterium had various effects on the diversity and richness of the microbiomes. The structure of the live feed microbiomes was significantly changed, while no effect was seen on the community structure associated with turbot larvae. The changes were seen primarily in particular taxa. The Rhodobacterales order was indigenous to all three microbiomes and decreased in relative abundance when P. inhibens was introduced in the copepod and turbot microbiomes, while it was unaffected in the microalgal microbiome. Altogether, the study demonstrates that the addition of P. inhibens in higher concentrations, as part of a probiotic regime, does not appear to cause major imbalances in the microbiome, but the effects were specific to closely related taxa.IMPORTANCE This work is an essential part of the risk assessment of the application of roseobacters as probiotics in mariculture. It provides insights into the impact of TDA-producing Phaeobacter inhibens on the commensal bacteria related to mariculture live feed and fish larvae. Also, the study provides a sequencing-based characterization of the microbiomes related to mariculture-relevant microalga, copepods, and turbot larvae.


Asunto(s)
Chlorophyta/microbiología , Copépodos/microbiología , Peces Planos/microbiología , Microbiota , Probióticos/farmacología , Rhodobacteraceae/química , Alimentación Animal , Animales , Bacterias/aislamiento & purificación , Copépodos/crecimiento & desarrollo , Peces Planos/crecimiento & desarrollo , Larva/microbiología , Microalgas/microbiología , Óvulo/microbiología , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
2.
Antibiotics (Basel) ; 7(2)2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29772736

RESUMEN

The aquaculture industry is suffering from losses associated with bacterial infections by opportunistic pathogens. Vibrio anguillarum is one of the most important pathogens, causing vibriosis in fish and shellfish cultures leading to high mortalities and economic losses. Bacterial resistance to antibiotics and inefficient vaccination at the larval stage of fish emphasizes the need for novel approaches, and phage therapy for controlling Vibrio pathogens has gained interest in the past few years. In this study, we examined the potential of the broad-host-range phage KVP40 to control four different V. anguillarum strains in Atlantic cod (Gadus morhua L.) and turbot (Scophthalmus maximus L.) larvae. We examined larval mortality and abundance of bacteria and phages. Phage KVP40 was able to reduce and/or delay the mortality of the cod and turbot larvae challenged with V. anguillarum. However, growth of other pathogenic bacteria naturally occurring on the fish eggs prior to our experiment caused mortality of the larvae in the unchallenged control groups. Interestingly, the broad-spectrum phage KVP40 was able to reduce mortality in these groups, compared to the nonchallenge control groups not treated with phage KVP40, demonstrating that the phage could also reduce mortality imposed by the background population of pathogens. Overall, phage-mediated reduction in mortality of cod and turbot larvae in experimental challenge assays with V. anguillarum pathogens suggested that application of broad-host-range phages can reduce Vibrio-induced mortality in turbot and cod larvae, emphasizing that phage therapy is a promising alternative to traditional treatment of vibriosis in marine aquaculture.

3.
Microb Biotechnol ; 11(6): 1070-1079, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29732685

RESUMEN

The expanding aquaculture industry plays an important role in feeding the growing human population and with the expansion, sustainable bacterial disease control, such as probiotics, becomes increasingly important. Tropodithietic acid (TDA)-producing Phaeobacter spp. can protect live feed, for example rotifers and Artemia as well as larvae of turbot and cod against pathogenic vibrios. Here, we show that the emerging live feed, copepods, is unaffected by colonization of the fish pathogen Vibrio anguillarum, making them potential infection vectors. However, TDA-producing Phaeobacter inhibens was able to significantly inhibit V. anguillarum in non-axenic cultures of copepod Acartia tonsa and the copepod feed Rhodomonas salina. Vibrio grew to 106  CFU ml-1 and 107  CFU ml-1 in copepod and R. salina cultures, respectively. However, vibrio counts remained at the inoculum level (104  CFU ml-1 ) when P. inhibens was also added. We further developed a semi-strain-specific qPCR for V. anguillarum to detect and quantify the pathogen in non-axenic systems. In conclusion, P. inhibens efficiently inhibits the fish larval pathogen V. anguillarum in the emerging live feed, copepods, supporting its use as a probiotic in aquaculture. Furthermore, qPCR provides an effective method for detecting vibrio pathogens in complex non-axenic live feed systems.


Asunto(s)
Copépodos/crecimiento & desarrollo , Criptófitas/crecimiento & desarrollo , Enfermedades de los Peces/microbiología , Rhodobacteraceae/metabolismo , Tropolona/análogos & derivados , Vibriosis/veterinaria , Vibrio/fisiología , Alimentación Animal/análisis , Animales , Acuicultura , Copépodos/fisiología , Criptófitas/fisiología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/prevención & control , Peces Planos/metabolismo , Peces Planos/microbiología , Probióticos/administración & dosificación , Tropolona/metabolismo , Vibrio/crecimiento & desarrollo , Vibriosis/metabolismo , Vibriosis/microbiología , Vibriosis/prevención & control
4.
Appl Environ Microbiol ; 82(15): 4802-4810, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235441

RESUMEN

UNLABELLED: Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture. IMPORTANCE: It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture.


Asunto(s)
Antibacterianos/farmacología , Enfermedades de los Peces/microbiología , Tropolona/análogos & derivados , Vibriosis/veterinaria , Vibrio/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana , Peces , Genotipo , Fenotipo , Tropolona/farmacología , Vibrio/genética , Vibrio/patogenicidad , Vibrio/fisiología , Vibriosis/microbiología , Virulencia/efectos de los fármacos
5.
Syst Appl Microbiol ; 38(7): 483-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26343311

RESUMEN

Phaeobacter inhibens belongs to the marine Roseobacter clade and is important as a carbon and sulfur metabolizer, a biofilm former and producer of the antibiotic tropodithietic acid (TDA). The majority of cultured strains have been isolated from marine aquaculture sites, however, their niche in the environment is to date unknown. Here, we report on the repeated isolation of Phaeobacter inhibens strains from a marine environment (harbors) not related to aquaculture. Based on phenotype and 16S rRNA gene sequence similarity, a total of 64 P. inhibens strains were identified from 35 samples (eukaryotic organisms or biofilms on inert surfaces) in Jyllinge Harbor during late summer and autumn, but not during winter and spring in 2009, 2011, and 2012. P. inhibens strains were also isolated from biofilms at three other Danish harbors (in 2012), but not from the surrounding seawater. Ten of the 14 samples from which P. inhibens was cultured contained bryozoans. DNA was extracted (in 2012) from 55 out of 74 Jyllinge Harbor samples, and 35 were positive for Phaeobacter using a genus-specific PCR. P. inhibens strains were isolated from nine of these samples. DNA and RNA were isolated from 13 random samples and used for amplification of 16S rRNA. P. inhibens was detected in five of these samples, all of which were biofilm samples, by pyrotag-sequencing at a prevalence of 0.02-0.68% of the prokaryotic community. The results indicated that P. inhibens had a niche in biofilms of fouled surfaces in harbor areas and that the population followed a seasonal fluctuation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microbiología Ambiental , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/fisiología , Estaciones del Año , Análisis de Secuencia de ADN
6.
Mar Drugs ; 13(3): 1548-51, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25803179

RESUMEN

The authors wish to make the following corrections to this paper [1]: Due to duplicated and missing data in Table 3, Page 5533, replace: [...].

7.
Mar Drugs ; 12(11): 5527-46, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25419995

RESUMEN

Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.


Asunto(s)
Acil-Butirolactonas/metabolismo , Percepción de Quorum/fisiología , Vibrionaceae/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie , Espectrometría de Masas en Tándem/métodos , Vibrionaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...