Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38390522

RESUMEN

In nature, secondary metabolites mediate interactions between microorganisms residing in complex microbial communities. However, the degree to which community dynamics can be linked to secondary metabolite potential remains largely unknown. In this study, we address the relationship between community succession and secondary metabolism variation. We used 16S and 18S rRNA gene and adenylation domain amplicon sequencing, genome-resolved metagenomics, and untargeted metabolomics to track the taxons, biosynthetic gene clusters, and metabolome dynamics in situ of microorganisms during marine biofilm succession over 113 days. Two phases were identified during the community succession, with a clear shift around Day 29, where the alkaloid secondary metabolites, pseudanes, were also detected. The microbial secondary metabolite potential changed between the phases, and only a few community members, including Myxococotta spp., were responsible for the majority of the biosynthetic gene cluster potential in the early succession phase. In the late phase, bryozoans and benthic copepods were detected, and the microbial nonribosomal peptide potential drastically decreased in association with a reduction in the relative abundance of the prolific secondary metabolite producers. Conclusively, this study provides evidence that the early succession of the marine biofilm community favors prokaryotes with high nonribosomal peptide synthetase potential. In contrast, the late succession is dominated by multicellular eukaryotes and a reduction in bacterial nonribosomal peptide synthetase potential.

2.
Food Microbiol ; 117: 104372, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37919016

RESUMEN

Interest in fermented foods, especially plant-based ones, has increased considerably in the last decade. Miso-a Japanese paste traditionally fermented with soybeans, salt, and koji (Aspergillus oryzae grown on grains or beans)-has gained attention among chefs for its rich flavour and versatility. Some chefs have even been experimenting with making novel misos with untraditional substrates to create new flavours. Such novel fermented foods also offer new scientific opportunities. To explore the microbial diversity of these new traditional foods, we sampled six misos made by the team at a leading restaurant called Noma in Copenhagen (Denmark), using yellow peas (including a nixtamalised treatment), lupin seeds, Swedish Vreta peas, grey peas, and Gotland lentils as substrates. All misos were made with the same recipe and fermented for 3 months at 28 °C. Samples were collected at the end of fermentation for subsequent shotgun metagenomic sequencing and a genome-resolved metagenomic analysis. The taxonomic profile of the samples revealed the presence of koji mould (A. oryzae) and Bacillus amyloliquefaciens in all misos. Various species of the genera Latilactobacillus, Lactiplantibacillus, Pediococcus and Staphylococcus were also detected. The Metagenome-Assembled Genomes (MAGs) revealed genomic sequences belonging to 12 different species and functional analyses of these MAGs were performed. Notably, we detected the presence of Exiguobacterium-the first reported instance of the genus in miso-and Average Nucleotide Identity (ANI) analyses suggest a potentially new species. We hope these results will improve the scientific literature on misos and contribute to developing novel fermented plant-based foods.


Asunto(s)
Fabaceae , Alimentos Fermentados , Alimentos de Soja , Glycine max , Metagenómica , Aromatizantes/análisis , Fermentación
3.
Microbiol Res ; 271: 127372, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018898

RESUMEN

The gut microbiome is a critical component of avian health, influencing nutrient uptake and immune functions. While the gut microbiomes of agriculturally important birds have been studied, the microbiomes of wild birds still need to be explored. Filling this knowledge gap could have implications for the microbial rewilding of captive birds and managing avian hosts for antibiotic-resistant bacteria (ARB). Using genome-resolved metagenomics, we recovered 112 metagenome-assembled genomes (MAGs) from the faeces of wild and captive western capercaillies (Tetrao urogallus) (n = 8). Comparisons of bacterial diversity between the wild and captive capercaillies suggest that the reduced diversity in the captive individual could be due to differences in diet. This was further substantiated through the analyses of 517,657 clusters of orthologous groups (COGs), which revealed that gene functions related to amino acids and carbohydrate metabolisms were more abundant in wild capercaillies. Metagenomics mining of resistome identified 751 antibiotic resistance genes (ARGs), of which 40.7 % were specific to wild capercaillies suggesting that capercaillies could be potential reservoirs for hosting ARG-associated bacteria. Additionally, the core resistome shared between wild and captive capercaillies indicates that birds can acquire these ARG-associated bacteria naturally from the environment (43.1 % of ARGs). The association of 26 MAGs with 120 ARGs and 378 virus operational taxonomic units (vOTUs) also suggests a possible interplay between these elements, where putative phages could have roles in modulating the gut microbiota of avian hosts. These findings can have important implications for conservation and human health, such as avian gut microbiota rewilding, identifying the emerging threats or opportunities due to phage-microbe interactions, and monitoring the potential spread of ARG-associated bacteria from wild avian populations.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Viroma , Animales , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina , Aves/genética , Bacterias/genética , Farmacorresistencia Microbiana/genética , Metagenoma , Antibacterianos/farmacología , Metagenómica
4.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680370

RESUMEN

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Asunto(s)
Águilas , Contaminantes Ambientales , Animales , Humanos , Águilas/genética , Europa (Continente) , Noruega , Genómica , Variación Genética/genética
5.
BMC Ecol Evol ; 22(1): 110, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127636

RESUMEN

The banteng (Bos javanicus) is an endangered species within the wild Asian Bos complex, that has traditionally been subdivided into three geographically isolated subspecies based on (i) mainland Southeast Asia (B. j. birmanicus), (ii) Java (B. j. javanicus), and (iii) Borneo (B. j. lowi). However, analysis of a single Bornean banteng mitochondrial genome generated through a genome skimming approach was used to suggest that it may actually represent a distinct species (Ishige et al. in Mitochondrial DNA A DNA Mapp Seq Anal 27(4):2453-4. http://doi.org/10.3109/19401736.2015.1033694 , 2016). To explore this hypothesis further, we leveraged on the GenBank (NCBI) raw read sequencing data originally used to construct the mitochondrial genome and reconstructed its nuclear genome at low (0.2×) coverage. When analysed in the context of nuclear genomic data representing a broad reference panel of Asian Bos species, we find the Bornean banteng affiliates strongly with the Javan banteng, in contradiction to the expectation if the separate species hypothesis was correct. Thus, despite the Bornean banteng's unusual mitochondrial lineage, we argue there is no genomic evidence that the Bornean banteng is a distinct species.


Asunto(s)
Genoma Mitocondrial , Genómica , Animales , Asia Sudoriental , Borneo , Bovinos , Genoma Mitocondrial/genética
6.
7.
Sci Adv ; 8(16): eabm5944, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452284

RESUMEN

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.


Asunto(s)
Canidae , Lobos , Animales , Australia , Cruzamiento , Canidae/genética , Perros , Filogenia , Lobos/genética
8.
Microbiome ; 10(1): 21, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35094708

RESUMEN

BACKGROUND: Animal protein production is increasingly looking towards microbiome-associated services such as the design of new and better probiotic solutions to further improve gut health and production sustainability. Here, we investigate the functional effects of bacteria-based pro- and synbiotic feed additives on microbiome-associated functions in relation to growth performance in the commercially important rainbow trout (Oncorhynchus mykiss). We combine complementary insights from multiple omics datasets from gut content samples, including 16S bacterial profiling, whole metagenomes, and untargeted metabolomics, to investigate bacterial metagenome-assembled genomes (MAGs) and their molecular interactions with host metabolism. RESULTS: Our findings reveal that (I) feed additives changed the microbiome and that rainbow trout reared with feed additives had a significantly reduced relative abundance of the salmonid related Candidatus Mycoplasma salmoninae in both the mid and distal gut content, (II) genome resolved metagenomics revealed that alterations of microbial arginine biosynthesis and terpenoid backbone synthesis pathways were directly associated with the presence of Candidatus Mycoplasma salmoninae, and (III) differences in the composition of intestinal microbiota among feed types were directly associated with significant changes of the metabolomic landscape, including lipids and lipid-like metabolites, amino acids, bile acids, and steroid-related metabolites. CONCLUSION: Our results demonstrate how the use of multi-omics to investigate complex host-microbiome interactions enable us to better evaluate the functional potential of probiotics compared to studies that only measure overall growth performance or that only characterise the microbial composition in intestinal environments. Video Abstract.


Asunto(s)
Oncorhynchus mykiss , Probióticos , Simbióticos , Animales , Metagenoma , Metagenómica , Oncorhynchus mykiss/microbiología
9.
J Appl Microbiol ; 132(4): 3201-3216, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35032344

RESUMEN

AIMS: Given the pivotal role played by the gut microbiota in regulating the host immune system, great interest has arisen in the possibility of controlling fish health by modulating the gut microbiota. Hence, there is a need to better understand of the host-microbiota interactions after disease responses to optimize the use of probiotics to strengthen disease resilience and recovery. METHODS AND RESULTS: We tested the effects of a probiotic feed additive in rainbow trout and challenged the fish with the causative agent for enteric red mouth disease, Yersinia ruckeri. We evaluated the survival, host immune gene expression and the gut microbiota composition. Results revealed that provision of probiotics and exposure to Y. ruckeri induced immune gene expression in the host, which were associated with changes in the gut microbiota. Subsequently, infection with Y. ruckeri had very little effect on microbiota composition when probiotics were applied, indicating that probiotics increased stabilisation of the microbiota. Our analysis revealed potential biomarkers for monitoring infection status and fish health. Finally, we used modelling approaches to decipher interactions between gut bacteria and the host immune gene responses, indicating removal of endogenous bacteria elicited by non-specific immune responses. CONCLUSIONS: We discuss the relevance of these results emphasizing the importance of host-microbiota interactions, including the protective potential of the gut microbiota in disease responses. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results highlight the functional consequences of probiotic-induced changes in the gut microbiota post infection and the resulting host immune response.


Asunto(s)
Enfermedades de los Peces , Microbioma Gastrointestinal , Oncorhynchus mykiss , Probióticos , Yersiniosis , Animales , Enfermedades de los Peces/microbiología , Inmunidad , Oncorhynchus mykiss/microbiología , Yersiniosis/microbiología , Yersiniosis/veterinaria , Yersinia ruckeri
10.
iScience ; 24(11): 103226, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34712923

RESUMEN

The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...