Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163251

RESUMEN

Type 1 Ser/Thr protein phosphatases are represented in all fungi by two enzymes, the ubiquitous PP1, with a conserved catalytic polypeptide (PP1c) and numerous regulatory subunits, and PPZ, with a C-terminal catalytic domain related to PP1c and a variable N-terminal extension. Current evidence indicates that, although PP1 and PPZ enzymes might share some cellular targets and regulatory subunits, their functions are quite separated, and they have individual regulation. We explored the structures of PP1c and PPZ across 57 fungal species to identify those features that (1) are distinctive among these enzymes and (2) have been preserved through evolution. PP1c enzymes are more conserved than PPZs. Still, we identified 26 residues in the PP1 and PPZ catalytic moieties that are specific for each kind of phosphatase. In some cases, these differences likely affect the distribution of charges in the surface of the protein. In many fungi, Hal3 is a specific inhibitor of the PPZ phosphatases, although the basis for the interaction of these proteins is still obscure. By in vivo co-purification of the catalytic domain of ScPpz1 and ScHal3, followed by chemical cross-linking and MS analysis, we identified a likely Hal3-interacting region in ScPpz1 characterized by two major and conserved differences, D566 and D615 in ScPpz1, which correspond to K210 and K259 in ScPP1c (Glc7). Functional analysis showed that changing D615 to K renders Ppz1 refractory to Hal3 inhibition. Since ScHal3 does not regulate Glc7 but it inhibits all fungal PPZ tested so far, this conserved D residue could be pivotal for the differential regulation of both enzymes in fungi.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/fisiología , Fenotipo , Proteína Fosfatasa 1/metabolismo
2.
J Biol Chem ; 292(19): 8103-8121, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28325834

RESUMEN

Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer-of-dimer discs stabilized by the C-terminal tails, possibly through tail-to-tail interactions between the discs, mediated through extended IXVXI motifs. Our model further suggests that six N-terminal arms are located on the outside of the dodecamer, accessible for interaction with client proteins, and distinct from previous undefined or inwardly facing arms. To test the importance of the IXVXI motif, we created the point mutant V181A, which, as expected, disrupts the Hsp21 dodecamer and decreases chaperone activity. Finally, our data emphasize that sHsp chaperone efficiency depends on oligomerization and that client interactions can occur both with and without oligomer dissociation. These results provide a generalizable workflow to explore sHsps, expand our understanding of sHsp structural motifs, and provide a testable Hsp21 structure model to inform future investigations.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Mutación , Mutación Puntual , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Dispersión de Radiación , Rayos X
3.
Amino Acids ; 48(12): 2799-2808, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27550041

RESUMEN

A comprehensive monosaccharide composition of the N-glycans of donkey milk lactoferrin, isolated by ion exchange chromatography from an individual milk sample, was obtained by means of chymotryptic digestion, TiO2 and HILIC enrichment, reversed-phase high-performance liquid chromatography, electrospray mass spectrometry, and high collision dissociation fragmentation. The results obtained allowed identifying 26 different glycan structures, including high mannose, complex and hybrid N-glycans, linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281 and 476. Altogether, the N-glycan structures determined revealed that most of the N-glycans identified in donkey milk lactoferrin are neutral complex/hybrid. Indeed, 10 neutral non-fucosylated complex/hybrid N-glycans and 4 neutral fucosylated complex/hybrid N-glycans were found. In addition, two high mannose N-glycans, four sialylated fucosylated complex N-glycans and six sialylated non-fucosylated complex N-glycans, one of which containing N-glycolylneuraminic acid (Neu5Gc), were found. A comparison of the monosaccharide composition of the N-glycans of donkey milk lactoferrin with respect to that of human, bovine and goat milk lactoferrin is reported. Data are available via ProteomeXchange with identifier PXD004289.


Asunto(s)
Lactoferrina/química , Leche/química , Monosacáridos/química , Polisacáridos/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Equidae , Glicosilación , Cabras , Humanos , Lactoferrina/aislamiento & purificación , Lactoferrina/metabolismo , Espectrometría de Masas , Leche/metabolismo , Monosacáridos/aislamiento & purificación , Monosacáridos/metabolismo , Polisacáridos/aislamiento & purificación , Polisacáridos/metabolismo
4.
Glycobiology ; 25(12): 1350-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306636

RESUMEN

A mutant Trypanosoma rangeli sialidase, Tr7, expressed in Pichia pastoris, exhibits significant trans-sialidase activity, and has been used for analytical-scale production of sialylated human milk oligosaccharides. Mass spectrometry-based site-specific N-glycoprofiling of Tr7 showed that heterogeneous high-mannose type N-glycans were present at all the five potential N-linked glycosites. N-linked glycans in Tr7 were predominantly neutral oligosaccharides with compositions Man(8-16)GlcNA(c2), but also mono- and di-phosphorylated oligosaccharides in the forms of Man(9-15)P(1)GlcNA(c2) and Man(9-14)P(2)GlcNA(c2), respectively. Some phosphorylated N-linked glycans further contained an additional HexNAc, which has not previously been reported in P. pastoris-expressed proteins. We compiled a method pipeline that combined hydrophilic interaction liquid chromatography enrichment of glycopeptides, high accuracy mass spectrometry and automated interpretation of the mass spectra with in-house developed "MassAI" software, which proved efficient in glycan site microheterogeneity analysis. Functional analysis showed that the deglycosylated Tr7 retained more than 90% of both the sialidase and trans-sialidase activities relative to the glycosylated Tr7.


Asunto(s)
Mutación , Neuraminidasa/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Trypanosoma rangeli/enzimología , Glicosilación , Leche Humana/química , Neuraminidasa/química , Neuraminidasa/genética , Pichia/genética , Pichia/metabolismo , Polisacáridos/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes , Trypanosoma rangeli/genética
5.
J Proteomics ; 74(10): 1871-83, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21600323

RESUMEN

The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. CrossWork searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show that the resulting distance constraints agree with the established structures. We further investigated the structure of the multi-domain ERp72, and combined the individual domains of ERp72 into a single structure.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Péptidos/química , Programas Informáticos , Espectrometría de Masas en Tándem , Complemento C3/química , Glutaratos/química , Humanos , Glicoproteínas de Membrana/química , Modelos Moleculares , Péptidos/análisis , Estructura Terciaria de Proteína , Succinimidas/química
6.
J Cell Commun Signal ; 1(3-4): 185-93, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18600478

RESUMEN

Of a number of peptides isolated from the extracellular medium of Tetrahymena cultures, two with masses 9.9 and 22.4 kDa allowed low-density cultures of this ciliate to survive and enter a proliferate phase. The smaller peptide (TCSF1) also greatly helped cultured mammalian fibroblasts to survive in medium containing very low concentrations of serum for considerably longer than controls, and to grow when full strength medium was restored. The primary sequence of the TCSF1 was determined, and synthetic TCSF1 was observed to exhibit rescuing activity comparable to that of the native peptide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...