Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
New Phytol ; 236(2): 671-683, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751540

RESUMEN

Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.


Asunto(s)
Micobioma , Micorrizas , Micorrizas/genética , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo
2.
New Phytol ; 235(4): 1615-1628, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35514157

RESUMEN

Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change.


Asunto(s)
Quercus , Árboles , Animales , Insectos , Hojas de la Planta/química , Estaciones del Año
3.
J Biogeogr ; 49(12): 2269-2280, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36636040

RESUMEN

Aim: Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities. Location: A latitudinal gradient spanning c. 20 degrees in latitude in Europe. Taxa: The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur. Methods: We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding. Results: Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude. Conclusions: Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.

4.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355467

RESUMEN

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Asunto(s)
Máscaras , Plantago , Adaptación Fisiológica , Biomasa , Fenotipo
5.
Waste Manag ; 131: 237-248, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34171828

RESUMEN

Occupational exposure to microorganisms can be associated with adverse health outcomes. In this study, we assessed exposure to bioaerosols in two biowaste pretreatment plants in Denmark, which differed in location (city or countryside) and how they were built ('closed-off processes' or 'open processes'). Bioaerosol exposures were characterized by microbial concentrations in personal, stationary, sedimented dust, and hand samples, and their size distribution was assessed. Furthermore, species were identified by matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS), and inhalable dust, endotoxin, biofilm production, the total inflammatory potential, and fungicide resistance to four fungicides (amphotericin B, caspofungin acetate, itraconazole, voriconazole) were determined. Bacterial and fungal concentrations were on average (GM) in the order of 104 cfu/m3, but ranged from 102 to 108 cfu/m3. Several species which may cause health problems were identified. Personal endotoxin exposures were on average 28 EU/m3, but both personal and stationary samples ranged from 0.6 to 2035 EU/m3. Bioaerosols had the potential to form biofilms and to induce inflammation as measured in a human cell line. Exposures were higher in the plants that outdoor reference values. Higher exposures were found in the 'open process' plant, such as in microbial concentrations, species richness, endotoxin, biofilm production, and the total inflammatory potential. Six out of 28 tested Aspergillus fumigatus isolates were resistant to fungicides (amphotericin B and voriconazole). In conclusion, there is a high exposure to bioaerosols during work in biowaste pretreatment plants, however, results also suggests that how the plant is built and functions may affect the exposures.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Salud Laboral , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente , Humanos , Exposición Profesional/análisis
6.
Am J Bot ; 108(1): 172-176, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33448059

RESUMEN

PREMISE: Abiotic factors and plant species traits have been shown to drive latitudinal gradients in herbivory, and yet, population-level factors have been largely overlooked within this context. One such factor is plant density, which may influence the strength of herbivory and may vary with latitude. METHODS: We measured insect herbivory and conspecific plant density (CPD) of oak (Quercus robur) seedlings and saplings along a 17° latitudinal gradient (2700 km) to test whether herbivory exhibited a latitudinal gradient, whether herbivory was associated with CPD, and whether such an association changed with latitude. RESULTS: We found a positive but saturating association between latitude and leaf herbivory. Furthermore, we found no significant relationship between CPD and herbivory, and such lack of density effects remained consistent throughout the sampled latitudinal gradient. CONCLUSIONS: Despite the apparently negligible influence of plant density on herbivory for Q. robur, further research with other plant taxa and in different types of plant communities are needed to investigate density-dependent processes shaping geographical variation in plant-herbivore interactions.


Asunto(s)
Herbivoria , Quercus , Animales , Insectos , Hojas de la Planta , Plantones
7.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034102

RESUMEN

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/química
8.
New Phytol ; 220(4): 1248-1261, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29573431

RESUMEN

Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity.


Asunto(s)
Micobioma , Micorrizas/fisiología , Plantago/microbiología , Microbiología del Suelo , Geografía , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...