Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cardiovasc Res ; 119(15): 2550-2562, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37648651

RESUMEN

AIMS: Cardiac fibrosis drives the progression of heart failure in ischaemic and hypertrophic cardiomyopathy. Therefore, the development of specific anti-fibrotic treatment regimens to counteract cardiac fibrosis is of high clinical relevance. Hence, this study examined the presence of persistent fibroblast activation during longstanding human heart disease at a single-cell resolution to identify putative therapeutic targets to counteract pathological cardiac fibrosis in patients. METHODS AND RESULTS: We used single-nuclei RNA sequencing with human tissues from two samples of one healthy donor, and five hypertrophic and two failing hearts. Unsupervised sub-clustering of 7110 nuclei led to the identification of 7 distinct fibroblast clusters. De-convolution of cardiac fibroblast heterogeneity revealed a distinct population of human cardiac fibroblasts with a molecular signature of persistent fibroblast activation and a transcriptional switch towards a pro-fibrotic extra-cellular matrix composition in patients with established cardiac hypertrophy and heart failure. This sub-cluster was characterized by high expression of POSTN, RUNX1, CILP, and a target gene adipocyte enhancer-binding protein 1 (AEBP1) (all P < 0.001). Strikingly, elevated circulating AEBP1 blood level were also detected in a validation cohort of patients with confirmed cardiac fibrosis and hypertrophic cardiomyopathy by cardiac magnetic resonance imaging (P < 0.01). Since endogenous AEBP1 expression was increased in patients with established cardiac hypertrophy and heart failure, we assessed the functional consequence of siRNA-mediated AEBP1 silencing in human cardiac fibroblasts. Indeed, AEBP1 silencing reduced proliferation, migration, and fibroblast contractile capacity and α-SMA gene expression, which is a hallmark of fibroblast activation (all P < 0.05). Mechanistically, the anti-fibrotic effects of AEBP1 silencing were linked to transforming growth factor-beta pathway modulation. CONCLUSION: Together, this study identifies persistent fibroblast activation in patients with longstanding heart disease, which might be detected by circulating AEBP1 and therapeutically modulated by its targeted silencing in human cardiac fibroblasts.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Cardiopatías , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/metabolismo , Cardiopatías/patología , Cardiomegalia/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatías/metabolismo , Fibrosis , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Carboxipeptidasas/metabolismo , Proteínas Represoras/metabolismo
2.
Eur Heart J ; 44(21): 1943-1952, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36932691

RESUMEN

AIMS: Mosaic loss of Y chromosome (LOY) in blood cells is the most common acquired mutation, increases with age, and is related to cardiovascular disease. Loss of Y chromosome induces cardiac fibrosis in murine experiments mimicking the consequences of aortic valve stenosis, the prototypical age-related disease. Cardiac fibrosis is the major determinant of mortality even after transcatheter aortic valve replacement (TAVR). It was hypothesized that LOY affects long-term outcome in men undergoing TAVR. METHODS AND RESULTS: Using digital PCR in DNA of peripheral blood cells, LOY (Y/X ratio) was assessed by targeting a 6 bp sequence difference between AMELX and AMELY genes using TaqMan. The genetic signature of monocytes lacking the Y chromosome was deciphered by scRNAseq. In 362 men with advanced aortic valve stenosis undergoing successful TAVR, LOY ranged from -4% to 83.4%, and was >10% in 48% of patients. Three-year mortality increased with LOY. Receiver operating characteristic (ROC) curve analysis revealed an optimal cut-off of LOY >17% to predict mortality. In multivariate analysis, LOY remained a significant (P < 0.001) independent predictor of death during follow-up. scRNAseq disclosed a pro-fibrotic gene signature with LOY monocytes displaying increased expression of transforming growth factor (TGF) ß-associated signaling, while expression of TGFß-inhibiting pathways was down-regulated. CONCLUSION: This is the first study to demonstrate that LOY in blood cells is associated with profoundly impaired long-term survival even after successful TAVR. Mechanistically, the pro-fibrotic gene signature sensitizing the patient-derived circulating LOY monocytes for the TGFß signaling pathways supports a prominent role of cardiac fibrosis in contributing to the effects of LOY observed in men undergoing TAVR.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Masculino , Animales , Ratones , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Cromosomas Humanos Y , Monocitos , Mosaicismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/cirugía , Fibrosis , Válvula Aórtica/cirugía , Resultado del Tratamiento , Factores de Riesgo
3.
J Am Heart Assoc ; 11(6): e022792, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35229655

RESUMEN

Background Musclin is an activity-stimulated and cardioprotective myokine that attenuates pathological cardiac remodeling. Musclin deficiency, in turn, results in reduced physical endurance. The aim of this study was to assess the prognostic value of circulating musclin as a novel, putative biomarker to identify patients undergoing transcatheter aortic valve implantation (TAVI) who are at a higher risk of death. Methods and Results In this study, we measured systemic musclin levels in 368 patients undergoing TAVI who were at low to intermediate clinical risk (median EuroSCORE [European System for Cardiac Operative Risk Evaluation] II: 3.5; quartile 1-quartile, 2.2%-5.3%), whereby 209 (56.8%) patients were at low and 159 (43.2%) were at intermediate risk. Median preprocedural musclin levels were 2.7 ng/mL (quartile 1-quartile 3, 1.5-4.6 ng/mL). Musclin levels were dichotomized in low (<2.862 ng/mL, n=199 [54.1%]) or high (≥ 2.862 ng/mL, n=169 [45.9%]) groups using cutoff values determined by classification and regression tree analysis. The primary end point was 1-year overall survival. Patients with low circulating musclin levels exhibited a significantly higher prevalence of frailty, low albumin values, hypertension, and history of stroke as well as higher N-terminal pro-B-type natriuretic peptide. Low musclin levels significantly predicted risk of death in univariable (hazard ratio, 1.81; 95% CI, 1.00-3.53 [P=0.049]) and multivariable (adjusted hazard ratio, 2.45; 95% CI, 1.06-5.69 [P=0.037]) Cox regression analyses. Additionally, low musclin levels in combination with conventional EuroSCORE II suggested improved risk stratification in patients undergoing TAVI who were at low to intermediate clinical risk into subgroups with reduced 1-year survival rates by log-rank test (P for trend=0.003). Conclusions Circulating musclin is an independent predictor of 1-year overall survival in patients undergoing TAVI. Combined with EuroSCORE II, circulating musclin might help to improve prediction of mortality in patients undergoing TAVI who are at low to intermediate clinical risk.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/cirugía , Biomarcadores , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Medición de Riesgo/métodos , Factores de Riesgo , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
4.
Nat Commun ; 12(1): 3964, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172720

RESUMEN

The regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the bone vascular cell composition. We demonstrate an age-independent loss of type H endothelium in heart failure after myocardial infarction in both mice and humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium, showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1ß production partially prevented the post-myocardial infarction loss of type H vasculature in mice. These results provide a rationale for using anti-inflammatory therapies to prevent or reverse the deterioration of bone vascular function in ischemic heart disease.


Asunto(s)
Huesos/irrigación sanguínea , Células Endoteliales/patología , Insuficiencia Cardíaca/fisiopatología , Infarto del Miocardio/fisiopatología , Anciano , Animales , Huesos/fisiopatología , Estudios de Casos y Controles , Células Endoteliales/metabolismo , Femenino , Furanos/farmacología , Genes myc , Insuficiencia Cardíaca/etiología , Células Madre Hematopoyéticas/patología , Humanos , Indenos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Sulfonamidas/farmacología
5.
ESC Heart Fail ; 8(3): 1873-1884, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779075

RESUMEN

AIMS: Somatic mutations in haematopoietic stem cells can lead to the clonal expansion of mutated blood cells, known as clonal haematopoiesis (CH). Mutations in the most prevalent driver genes DNMT3A and TET2 with a variant allele frequency (VAF) ≥ 2% have been associated with atherosclerosis and chronic heart failure of ischemic origin (CHF). However, the effects of mutations in other driver genes for CH with low VAF (<2%) on CHF are still unknown. METHODS AND RESULTS: Therefore, we analysed mononuclear bone marrow and blood cells from 399 CHF patients by deep error-corrected targeted sequencing of 56 genes and associated mutations with the long-term mortality in these patients (3.95 years median follow-up). We detected 1113 mutations with a VAF ≥ 0.5% in 347 of 399 patients, and only 13% had no detectable CH. Despite a high prevalence of mutations in the most frequently mutated genes DNMT3A (165 patients) and TET2 (107 patients), mutations in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2 were associated with increased death compared with the average death rate of all patients. To avoid confounding effects, we excluded patients with DNMT3A-related, TET2-related, and other clonal haematopoiesis of indeterminate potential (CHIP)-related mutations with a VAF ≥ 2% for further analyses. Kaplan-Meier survival analyses revealed a significantly higher mortality in patients with mutations in either of the seven genes (53 patients), combined as the CH-risk gene set for CHF. Baseline patient characteristics showed no significant differences in any parameter including patient age, confounding diseases, severity of CHF, or blood cell parameters except for a reduced number of platelets in patients with mutations in the risk gene set in comparison with patients without. However, carrying a mutation in any of the risk genes remained significant after multivariate cox regression analysis (hazard ratio, 3.1; 95% confidence interval, 1.8-5.4; P < 0.001), whereas platelet numbers did not. CONCLUSIONS: Somatic mutations with low VAF in a distinct set of genes, namely, in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2, are significantly associated with mortality in CHF, independently of the most prevalent CHIP-mutations in DNMT3A and TET2. Mutations in these genes are prevalent in young CHF patients and comprise an independent risk factor for the outcome of CHF, potentially providing a novel tool for risk assessment in CHF.


Asunto(s)
Hematopoyesis Clonal , Insuficiencia Cardíaca , Proteínas de Unión al ADN/genética , Insuficiencia Cardíaca/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas/genética
6.
Eur Heart J ; 42(3): 257-265, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33241418

RESUMEN

AIMS: Somatic mutations of the epigenetic regulators DNMT3A and TET2 causing clonal expansion of haematopoietic cells (clonal haematopoiesis; CH) were shown to be associated with poor prognosis in chronic ischaemic heart failure (CHF). The aim of our analysis was to define a threshold of variant allele frequency (VAF) for the prognostic significance of CH in CHF. METHODS AND RESULTS: We analysed bone marrow and peripheral blood-derived cells from 419 patients with CHF by error-corrected amplicon sequencing. Cut-off VAFs were optimized by maximizing sensitivity plus specificity from a time-dependent receiver operating characteristic (ROC) curve analysis from censored data. 56.2% of patients were carriers of a DNMT3A- (N = 173) or a TET2- (N = 113) mutation with a VAF >0.5%, with 59 patients harbouring mutations in both genes. Survival ROC analyses revealed an optimized cut-off value of 0.73% for TET2- and 1.15% for DNMT3A-CH-driver mutations. Five-year-mortality was 18% in patients without any detected DNMT3A- or TET2 mutation (VAF < 0.5%), 29% with only one DNMT3A- or TET2-CH-driver mutations above the respective cut-off level and 42% in patients harbouring both DNMT3A- and TET2-CH-driver mutations above the respective cut-off levels. In carriers of a DNMT3A mutation with VAF ≥ 1.15%, 5-year mortality was 31%, compared with 18% mortality in those with VAF < 1.15% (P = 0.048). Likewise, in patients with TET2 mutations, 5-year mortality was 32% with VAF ≥ 0.73%, compared with 19% mortality with VAF < 0.73% (P = 0.029). CONCLUSION: The present study defines novel threshold levels for clone size caused by acquired somatic mutations in the CH-driver genes DNMT3A and TET2 that are associated with worse outcome in patients with CHF.


Asunto(s)
Hematopoyesis Clonal , Insuficiencia Cardíaca , Células Clonales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Dioxigenasas , Humanos , Mutación , Pronóstico , Proteínas Proto-Oncogénicas/genética
7.
ESC Heart Fail ; 7(5): 2597-2610, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32639677

RESUMEN

AIMS: Systemic inflammatory response, identified by increased total leucocyte counts, was shown to be a strong predictor of mortality after transcatheter aortic valve implantation (TAVI). Yet the mechanisms of inflammation-associated poor outcome after TAVI are unclear. Therefore, the present study aimed at investigating individual inflammatory signatures and functional heterogeneity of circulating myeloid and T-lymphocyte subsets and their impact on 1 year survival in a single-centre cohort of patients with severe aortic stenosis undergoing TAVI. METHODS AND RESULTS: One hundred twenty-nine consecutive patients with severe symptomatic aortic stenosis admitted for transfemoral TAVI were included. Blood samples were obtained at baseline, immediately after, and 24 h and 3 days after TAVI, and these were analysed for inflammatory and cardiac biomarkers. Myeloid and T-lymphocyte subsets were measured using flow cytometry. The inflammatory parameters were first analysed as continuous variables; and in case of association with outcome and area under receiver operating characteristic (ROC) curve (AUC) ≥ 0.6, the values were dichotomized using optimal cut-off points. Several baseline inflammatory parameters, including high-sensitivity C-reactive protein (hsCRP; HR = 1.37, 95% CI: 1.15-1.63; P < 0.0001) and IL-6 (HR = 1.02, 95% CI: 1.01-1.03; P = 0.003), lower counts of Th2 (HR = 0.95, 95% CI: 0.91-0.99; P = 0.009), and increased percentages of Th17 cells (HR = 1.19, 95% CI: 1.02-1.38; P = 0.024) were associated with 12 month all-cause mortality. Among postprocedural parameters, only increased post-TAVI counts of non-classical monocytes immediately after TAVI were predictive of outcome (HR = 1.03, 95% CI: 1.01-1.05; P = 0.003). The occurrence of SIRS criteria within 48 h post-TAVI showed no significant association with 12 month mortality (HR = 0.57, 95% CI: 0.13-2.43, P = 0.45). In multivariate analysis of discrete or dichotomized clinical and inflammatory variables, the presence of diabetes mellitus (HR = 3.50; 95% CI: 1.42-8.62; P = 0.006), low left ventricular (LV) ejection fraction (HR = 3.16; 95% CI: 1.35-7.39; P = 0.008), increased baseline hsCRP (HR = 5.22; 95% CI: 2.09-13.01; P < 0.0001), and low baseline Th2 cell counts (HR = 8.83; 95% CI: 3.02-25.80) were significant predictors of death. The prognostic value of the linear prediction score calculated of these parameters was superior to the Society of Thoracic Surgeons score (AUC: 0.88; 95% CI: 0.78-0.99 vs. 0.75; 95% CI: 0.64-0.86, respectively; P = 0.036). Finally, when analysing LV remodelling outcomes, ROC curve analysis revealed that low numbers of Tregs (P = 0.017; AUC: 0.69) and increased Th17/Treg ratio (P = 0.012; AUC: 0.70) were predictive of adverse remodelling after TAVI. CONCLUSIONS: Our findings demonstrate an association of specific pre-existing inflammatory phenotypes with increased mortality and adverse LV remodelling after TAVI. Distinct monocyte and T-cell signatures might provide additive biomarkers to improve pre-procedural risk stratification in patients referred to TAVI for severe aortic stenosis.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Estenosis de la Válvula Aórtica/cirugía , Humanos , Volumen Sistólico , Factores de Tiempo , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Función Ventricular Izquierda
11.
JAMA Cardiol ; 4(1): 25-33, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566180

RESUMEN

Importance: Somatic mutations causing clonal expansion of hematopoietic cells (clonal hematopoiesis of indeterminate potential [CHIP]) are increased with age and associated with atherosclerosis and inflammation. Age and inflammation are the major risk factors for heart failure, yet the association of CHIP with heart failure in humans is unknown. Objective: To assess the potential prognostic significance of CHIP in patients with chronic heart failure (CHF) owing to ischemic origin. Design, Setting, and Participants: We analyzed bone marrow-derived mononuclear cells from 200 patients with CHF by deep targeted amplicon sequencing to detect the presence of CHIP and associated such with long-term prognosis in patients with CHF at University Hospital Frankfurt, Frankfurt, Germany. Data were analyzed between October 2017 and April 2018. Results: Median age of the patients was 65 years. Forty-seven mutations with a variant allele fraction (VAF) of at least 0.02 were found in 38 of 200 patients with CHF (18.5%). The somatic mutations most commonly occurred in the genes DNMT3A (14 patients), TET2 (9 patients), KDM6A (4 patients), and BCOR (3 patients). Patients with CHIP were older and more frequently had a history of hypertension. During a median follow-up of 4.4 years, a total of 53 patients died, and 23 patients required hospitalization for heart failure. There was a significantly worse long-term clinical outcome for patients with either DNMT3A or TET2 mutations compared with non-CHIP carriers. By multivariable Cox proportional regression analysis, the presence of somatic mutations within TET2 or DNMT3A (HR, 2.1; 95% CI, 1.1-4.0; P = .02, for death combined with heart failure hospitalization) and age (HR, 1.04; 95% CI, 1.01-1.07 per year; P = .005) but not a history of hypertension remained independently associated with adverse outcome. Importantly, there was a significant dose-response association between VAF and clinical outcome. Conclusions and Relevance: Our data suggest that somatic mutations in hematopoietic cells, specifically in the most commonly mutated CHIP driver genes TET2 and DNMT3A, may be significantly associated with the progression and poor prognosis of CHF. Future studies will have to validate our findings in larger cohorts and address whether targeting specific inflammatory pathways may be valuable for precision medicine in patients with CHF carrying specific mutations encoding for CHIP.


Asunto(s)
Evolución Clonal/genética , Insuficiencia Cardíaca/mortalidad , Hematopoyesis/genética , Isquemia Miocárdica/mortalidad , Anciano , Alelos , Aterosclerosis/complicaciones , Aterosclerosis/genética , Células de la Médula Ósea , Enfermedad Crónica , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hospitalización , Humanos , Hipertensión , Inflamación/complicaciones , Inflamación/genética , Masculino , Persona de Mediana Edad , Monocitos , Mutación , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Pronóstico , Proteínas Proto-Oncogénicas/genética , Factores de Riesgo
12.
Stem Cells ; 34(8): 2236-48, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145479

RESUMEN

Administration of bone marrow-derived mononuclear cells (BMC) may increase cardiac function after myocardial ischemia. However, the functional capacity of BMC derived from chronic heart failure (CHF) patients is significantly impaired. As modulation of the energy metabolism allows cells to match the divergent demands of the environment, we examined the regulation of energy metabolism in BMC from patients and healthy controls (HC). The glycolytic capacity of CHF-derived BMC is reduced compared to HC, whereas BMC of metabolically activated bone marrow after acute myocardial infarction reveal increased metabolism. The correlation of metabolic pathways with the functional activity of cells indicates an influence of metabolism on cell function. Reducing glycolysis without profoundly affecting ATP-production reversibly reduces invasion as well as colony forming capacity and abolishes proliferation of CD34(+) CD38(-) lin(-) hematopoietic stem and progenitor cells (HSPC). Ex vivo inhibition of glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia model in vivo. In contrast, inhibition of respiration, without affecting total ATP production, leads to a compensatory increase in glycolytic capacity correlating with increased colony forming capacity. Isolated CD34(+) , CXCR4(+) , and CD14(+) cells showed higher glycolytic activity compared to their negative counterparts. Metabolic activity was profoundly modulated by the composition of media used to store or culture BMC. This study provides first evidence that metabolic alterations influence the functional activity of human HSPC and BMC independent of ATP production. Changing the balance between respiration and glycolysis might be useful to improve patient-derived cells for clinical cardiac cell therapy. Stem Cells 2016;34:2236-2248.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Insuficiencia Cardíaca/terapia , Isquemia Miocárdica/terapia , Animales , Respiración de la Célula , Ensayo de Unidades Formadoras de Colonias , Medios de Cultivo , Glucólisis , Insuficiencia Cardíaca/patología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Humanos , Metabolómica , Ratones Desnudos , MicroARNs/metabolismo , Isquemia Miocárdica/patología , Neovascularización Fisiológica , Factor de Transcripción STAT5/metabolismo
13.
J Cardiovasc Transl Res ; 7(7): 644-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25217035

RESUMEN

Cell therapy of acute myocardial infarction (AMI) with bone marrow-derived mononuclear cells (BMC) resulted in a modest improvement of cardiac function, but clinical trial results were heterogeneous. After isolation, BMC are maintained in medium supplemented with complements such as autologous serum to maintain optimal cell viability until administration. In the REPAIR-AMI trial, serum was prepared using tubes containing coagulation accelerators, but the regulatory agency recommended using additive-free tubes for the pivotal BAMI trial. Here, we show that serum obtained from patients with anti-thrombotic therapy in tubes without coagulation accelerators induces clotting, thereby rendering the cell product unsuitable for intra-coronary application. Specifically, systemic treatment of patients with low doses of heparin prevented efficient coagulation ex vivo, and the resulting partially clotted plasma induced cell aggregation within 1-18 h in the cell product. Utmost care has to be taken to test autologous components of cell products before clinical use. The development of media including the appropriate recombinant growth factors for maintaining cell functionality ex vivo may be warranted.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Recolección de Muestras de Sangre/métodos , Trasplante de Médula Ósea/métodos , Fibrinolíticos/efectos adversos , Heparina/efectos adversos , Suero , Trasplante de Células Madre/métodos , Pruebas de Coagulación Sanguínea , Recolección de Muestras de Sangre/instrumentación , Técnicas de Cultivo de Célula , Células Cultivadas , Medios de Cultivo , Equipos Desechables , Diseño de Equipo , Humanos , Factores de Tiempo , Trasplante Autólogo
14.
Circ Res ; 111(7): 854-62, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22821930

RESUMEN

RATIONALE: Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells is missing. OBJECTIVE: Here, we investigated the effects of heparin and the thrombin inhibitor bivalirudin on bone marrow-derived mononuclear cell (BMC) functional activity and homing capacity. METHODS AND RESULTS: Heparin, but not bivalirudin profoundly and dose-dependently inhibited basal and stromal cell-derived factor 1 (SDF-1)-induced BMC migration. Incubation of BMCs with 20 U/mL heparin for 30 minutes abrogated SDF-1-induced BMC invasion (16±8% of control; P<0.01), whereas no effects on apoptosis or colony formation were observed (80±33% and 100±44% of control, respectively). Pretreatment of BMCs with heparin significantly reduced the homing of the injected cells in a mouse ear-wound model (69±10% of control; P<0.05). In contrast, bivalirudin did not inhibit in vivo homing of BMCs. Mechanistically, heparin binds to both, the chemoattractant SDF-1 and its receptor, chemokine receptor 4 (CXCR4), blocking CXCR4 internalization as well as SDF-1/CXCR4 signaling after SDF-1 stimulation. CONCLUSIONS: Heparin blocks SDF-1/CXCR4 signaling by binding to the ligand as well as the receptor, thereby interfering with migration and homing of BMCs. In contrast, the thrombin inhibitor bivalirudin did not interfere with BMC homing or SDF-1/CXCR4 signaling. These findings suggest that bivalirudin but not heparin might be recommended as an anticoagulant for intracoronary infusion of BMCs for cell therapy after cardiac ischemia.


Asunto(s)
Células de la Médula Ósea/citología , Tratamiento Basado en Trasplante de Células y Tejidos , Quimiocina CXCL12/efectos de los fármacos , Heparina/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Infarto del Miocardio/terapia , Receptores CXCR4/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Anticoagulantes/farmacología , Antitrombinas/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Quimiocina CXCL12/fisiología , Modelos Animales de Enfermedad , Femenino , Hirudinas/farmacología , Humanos , Técnicas In Vitro , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/fisiología , Ratones , Ratones Endogámicos , Fragmentos de Péptidos/farmacología , Receptores CXCR4/fisiología , Proteínas Recombinantes/farmacología , Transducción de Señal/fisiología
15.
Arterioscler Thromb Vasc Biol ; 29(11): 1802-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19696399

RESUMEN

OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However, BMCs comprise a heterogeneous mixture of cells, and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4, we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise, capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors, we analyzed BMC supernatants for secreted factors. Importantly, supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically, their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.


Asunto(s)
Células de la Médula Ósea/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Leucocitos Mononucleares/metabolismo , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Enfermedad Aguda , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Miembro Posterior/metabolismo , Humanos , Leucocitos Mononucleares/citología , Ratones , Ratones Desnudos , Neovascularización Fisiológica/genética , Probabilidad , Distribución Aleatoria , Receptores CXCR4/genética , Flujo Sanguíneo Regional/fisiología , Estadísticas no Paramétricas , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...