Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836794

RESUMEN

The newly synthesized quinoline-benzimidazole hybrids containing two types of triazole-methyl-phenoxy linkers were characterized via NMR and elemental analysis. Additional derivatization was achieved by introducing bromine at the C-2 position of the phenoxy core. These novel hybrids were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts), leukemia and lymphoma cell lines: Hut78, THP-1 and HL-60, and carcinoma cell lines: HeLa and CaCo-2. The results obtained, presented as the concentration that achieves 50% inhibition of cell growth (IC50 value), show that the compounds tested affect tumor cell growth differently depending on the cell line and the dose applied (IC50 ranged from 0.2 to >100 µM). The quinoline-benzimidazole hybrids tested, including 7-chloro-4-(4-{[4-(5-methoxy-1H-1,3-benzo[d]imidazol-2-yl)phenoxy]methyl}-1H-1,2,3-triazol-1-yl)quinoline 9c, 2-(3-bromo-4-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methoxy}phenyl)-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 10e, 2-{4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 14e and 2-{3-bromo-4-[(1-{2-[(7-chloroquinolin-4-yl)amino]ethyl}-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-N-propyl-1H-benzo[d]imidazol-5-carboximidamide trihydrochloride 15e, arrested the cell cycle of lymphoma (HuT78) cells. The calculated ADMET properties showed that the synthesized compounds violated at most two of Lipinski's rules, making them potential drug candidates, but mainly for parenteral use due to low gastrointestinal absorption. The quinoline-benzimidazole hybrid 14e, which was shown to be a potent and selective inhibitor of lymphoma cell line growth, obtained the highest binding energy (-140.44 kcal/mol), by docking to the TAO2 kinase domain (PDB: 2GCD).


Asunto(s)
Linfoma , Quinolinas , Humanos , Triazoles/química , Relación Estructura-Actividad , Células CACO-2 , Quinolinas/farmacología , Quinolinas/química , Bencimidazoles/química , Simulación del Acoplamiento Molecular
2.
Molecules ; 28(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37630388

RESUMEN

The aim of this study was to explore the mechanism of antitumor effect of (E)-6-morpholino-9-(styrylsulfonyl)-9H-purine (6-Morpholino-SPD) and (E)-6-amino-9-(styrylsulfonyl)-9H-purine (6-Amino-SPD). The effects on apoptosis induction, mitochondrial potential, and accumulation of ROS in treated K562 cells were determined by flow cytometry. The RT-PCR method was used to measure the expression of Akt, CA IX, caspase 3, and cytochrome c genes, as well as selected miRNAs. Western blot analysis was used to determine the expression of Akt, cytochrome c, and caspase 3. The results demonstrate the potential of the tested derivatives as effective antitumor agents with apoptotic-inducing properties. In leukemic cells treated with 6-Amino-SPD, increased expression of caspase 3 and cytochrome c genes was observed, indicating involvement of the intrinsic mitochondrial pathway in the induction of apoptosis. Conversely, leukemic cells treated with 6-Morpholino-SPD showed reduced expression of these genes. The observed downregulation of miR-21 by 6-Morpholino-SPD may contribute to the induction of apoptosis and disruption of mitochondrial function. In addition, both derivatives exhibited increased expression of Akt and CA IX genes, suggesting activation of the Akt/HIF pathway. However, the exact mechanism and its relations to the observed overexpression of miR-210 need further investigation. The acceptable absorption and distribution properties predicted by ADMET analysis suggest favorable pharmacokinetic properties for these derivatives.


Asunto(s)
Leucemia , MicroARNs , Humanos , Caspasa 3/genética , Morfolinos , Citocromos c , Proteínas Proto-Oncogénicas c-akt , Leucemia/tratamiento farmacológico , Leucemia/genética , MicroARNs/genética
3.
Chem Biodivers ; 20(8): e202300575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37417922

RESUMEN

Application of deep eutectic solvents in synthesis of different heterocyclic compounds was proven very efficient. These solvents are a new generation of green solvents showing excellent potential for different purposes, where they are used as environmentally acceptable substitute for toxic and volatile organic solvents. This research describes their application in the synthesis of series of quinazolinone Schiff bases in combination with microwave, ultrasound-assisted and mechanochemical methods. First, a model reaction was performed in 20 different deep eutectic solvents to find the best solvent and then reaction conditions (solvent, temperature and reaction time) were optimized for each method. Afterwards, 40 different quinazolinone derivatives were synthesized in choline chloride/malonic acid (1 : 1) DES by each method and compared by their yields. Here we show that deep eutectic solvents can be very efficient in the synthesis of quinazolinone derivatives as an excellent substitution for volatile organic solvents. With green chemistry approach in mind, we have also performed a calculation on compounds' toxicity and solubility, showing that most of them possess toxic and mutagenic properties with low water solubility.


Asunto(s)
Colina , Disolventes Eutécticos Profundos , Solventes , Colina/química
4.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298285

RESUMEN

Fluoro-substituted pyrazoles have a wide range of biological activities, such as antibacterial, antiviral, and antifungal activities. The aim of this study was to evaluate the antifungal activities of fluorinated 4,5-dihydro-1H-pyrazole derivatives on four phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, Fusarium oxysporum f. sp. lycopersici, and F. culmorum. Moreover, they were tested on two soil beneficial bacteria-Bacillus mycoides and Bradyrhizobium japonicum-as well as two entomopathogenic nematodes (EPNs)-Heterorhabditis bacteriophora and Steinernema feltiae. The molecular docking was performed on the three enzymes responsible for fungal growth, the three plant cell wall-degrading enzymes, and acetylcholinesterase (AChE). The most active compounds against fungi S. sclerotiorum were 2-chlorophenyl derivative (H9) (43.07% of inhibition) and 2,5-dimethoxyphenyl derivative (H7) (42.23% of inhibition), as well as H9 against F. culmorum (46.75% of inhibition). Compounds were shown to be safe for beneficial soil bacteria and nematodes, except for compound H9 on EPN H. bacteriophora (18.75% mortality), which also showed the strongest inhibition against AChE (79.50% of inhibition). The molecular docking study revealed that antifungal activity is possible through the inhibition of proteinase K, and nematicidal activity is possible through the inhibition of AChE. The fluorinated pyrazole aldehydes are promising components of future plant protection products that could be environmentally and toxicologically acceptable.


Asunto(s)
Fusarium , Rabdítidos , Animales , Antifúngicos/farmacología , Suelo , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Pirazoles/farmacología , Bacterias , Hongos
5.
Antioxidants (Basel) ; 12(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37371871

RESUMEN

As the world's population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win-win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.

6.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677600

RESUMEN

In this study, new 7-chloro-4-aminoquinoline-benzimidazole compounds were synthesized and characterized by NMR, MS, and elemental analysis. These novel hybrids differ in the type of linker and in the substituent on the benzimidazole moiety. Their antiproliferative activities were evaluated on one non-tumor (MDCK1) and seven selected tumor (CaCo-2, MCF-7, CCRF-CEM, Hut78, THP-1, and Raji) cell lines by MTT test and flow cytometry analysis. The compounds with different types of linkers and an unsubstituted benzimidazole ring, 5d, 8d, and 12d, showed strong cytotoxic activity (the GI50 ranged from 0.4 to 8 µM) and effectively suppressed the cell cycle progression in the leukemia and lymphoma cells. After 24 h of treatment, compounds 5d and 12d induced the disruption of the mitochondrial membrane potential as well as apoptosis in HuT78 cells. The drug-like properties and bioavailability of the compounds were calculated using the Swiss ADME web tool, and a molecular docking study was performed on tyrosine-protein kinase c-Src (PDB: 3G6H). Compound 12d showed good solubility and permeability and bound to c-Src with an energy of -119.99 kcal/mol, forming hydrogen bonds with Glu310 and Asp404 in the active site and other residues with van der Waals interactions. The results suggest that compound 12d could be a leading compound in the further design of effective antitumor drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Células CACO-2 , Proliferación Celular , Antineoplásicos/química , Bencimidazoles/química , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis
7.
Anticancer Agents Med Chem ; 23(7): 839-846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36305127

RESUMEN

BACKGROUND: Rhodanine derivatives have a proven wide range of biological activities. OBJECTIVE: The aim of this study was to evaluate the cytotoxic effect of a series of rhodanine derivatives and investigate the quantitative structure-activity relationships, as well as binding modes to tyrosine kinase. METHODS: Cytotoxic effect on cell proliferation (CaCo-2, HeLa, MDCK-1, Hut-78, K562) in vitro was evaluated by the MTT viability assay. QSAR analysis was performed with Dragon descriptors using QSARINS software. Molecular docking was performed on the tyrosin kinase (c-Src) (PDB ID: 3G6H) using iGEMDOCK. RESULTS: Compounds with the best inhibiting activity toward all cell lines were the ones possessing only one group in the C2 of the phenyl ring. QSAR study on the cytotoxic activity against Human T cell lymphoma achieved the model that satisfies the fitting and internal cross-validation criteria (R2 = 0.75; Q2 LOO = 0.64). Descriptors included in the model (MATS2e, MATs7e, RDF060p) revealed the importance of the presence of atoms with higher polarizability in the outer region of molecules. The findings of the molecular docking study performed on the c-Src are in accordance with the results of the QSAR study. The key interactions with binding site residues were achieved through oxygen atoms from phenoxy and rhodanine groups and rhodanine sulphur atoms. CONCLUSION: Rhodanine derivatives could be developed as novel tyrosine kinase inhibitors in the treatment of leukemia.


Asunto(s)
Antineoplásicos , Rodanina , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Rodanina/farmacología , Rodanina/química , Células CACO-2 , Antineoplásicos/farmacología , Antineoplásicos/química
8.
J Biomol Struct Dyn ; 41(16): 7567-7581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36106968

RESUMEN

Dipeptidyl peptidase III (DPP III) is a zinc-dependent enzyme that sequentially hydrolyzes biologically active peptides by cleaving dipeptides from their N-termini. Although its fundamental role is not been fully elucidated, human DPP III (hDPP III) has been recognized in several pathophysiological processes of interest for drug development. In this article 27 quinazolinone-Schiff's bases were studied for their inhibitory activity against hDPP III combining an in vitro experiment with a computational approach. The biochemical assay showed that most compounds exhibited inhibitory activity at the 100 µM concentration. The best QSAR model included descriptors from the following 2D descriptor groups: information content indices, 2D autocorrelations, and edge adjacency indices. Five compounds were found to be the most potent inhibitors with IC50 values below 10 µM, while molecular docking predicted that these compounds bind to the central enzyme cleft and interact with residues of the substrate binding subsites. Molecular dynamics simulations of the most potent inhibitor (IC50=0.96 µM) provided valuable information explaining the role of PHE109, ARG319, GLU327, GLU329, and ILE386 in the mechanism of the inhibitor binding and stabilization. This is the first study that gives insight into quinazolinone-Schiff's bases binding to this metalloenzyme.Communicated by Ramaswamy H. Sarma.

9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555479

RESUMEN

Syntheses of 6-halogen-substituted benzothiazoles were performed by condensation of 4-hydroxybenzaldehydes and 2-aminotiophenoles and subsequent O-alkylation with appropriate halides, whereas 6-amidino-substituted benzothiazoles were synthesized by condensation of 5-amidino-2-aminothiophenoles and corresponding benzaldehydes. While most of the compounds from non-substituted and halogen-substituted benzothiazole series showed marginal antiproliferative activity on tested tumor cell lines, amidino benzazoles exhibited stronger inhibitory activity. Generally, imidazolyl benzothiazoles showed pronounced and nonselective activity, with the exception of 36c which had a strong inhibitory effect on HuT78 cells (IC50 = 1.6 µM) without adverse cytotoxicity on normal BJ cells (IC50 >100 µM). Compared to benzothiazoles, benzimidazole structural analogs 45a−45c and 46c containing the 1,2,3-triazole ring exhibited pronounced and selective antiproliferative activity against HuT78 cells with IC50 < 10 µM. Moreover, compounds 45c and 46c containing the methoxy group at the phenoxy unit were not toxic to normal BJ cells. Of all the tested compounds, benzimidazole 45a with the unsubstituted phenoxy central core showed the most pronounced cell growth inhibition on THP1 cells in the nanomolar range (IC50 = 0.8 µM; SI = 70). QSAR models of antiproliferative activity for benzazoles on T-cell lymphoma (HuT78) and non-tumor MDCK-1 cells elucidated the effects of the substituents at position 6 of benzazoles, demonstrating their dependence on the topological and spatial distribution of atomic mass, polarizability, and van der Waals volumes. A notable cell cycle perturbation with higher accumulation of cells in the G2/M phase, and a significant cell increase in subG0/G1 phase were found in HuT78 cells treated with 36c, 42c, 45a−45c and 46c. Apoptotic morphological changes, an externalization of phosphatidylserine, and changes in the mitochondrial membrane potential of treated cells were observed as well.


Asunto(s)
Antineoplásicos , Relación Estructura-Actividad Cuantitativa , Antineoplásicos/química , Línea Celular Tumoral , Benzotiazoles/farmacología , Benzotiazoles/química , Proliferación Celular , Bencimidazoles/química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales
10.
Front Chem ; 10: 912822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864866

RESUMEN

Thiazolidinediones are five-membered, heterocyclic compounds that possess a number of pharmacological activities such as antihyperglycemic, antitumor, antiarthritic, anti-inflammatory, and antimicrobial. Conventional methods for their synthesis are often environmentally unacceptable due to the utilization of various catalysts and organic solvents. In this study, deep eutectic solvents were used in the synthesis of thiazolidinedione derivatives that acted as both solvents and catalysts. Initially, a screening of 20 choline chloride-based deep eutectic solvents for thiazolidinedione synthesis, via Knoevenagel condensation, was performed in order to find the most suitable solvent. Deep eutectic solvent, choline chloride, N-methylurea, was proven to be the best for further synthesis of 19 thiazolidinedione derivatives. Synthesized thiazolidinediones are obtained in yields from 21.49% to 90.90%. The synthesized compounds were tested for the inhibition of lipid peroxidation as well as for the inhibition of soy lipoxygenase enzyme activity. The antioxidant activity of the compounds was also determined by the ABTS and DPPH methods. Compounds showed lipoxygenase inhibition in the range from 7.7% to 76.3%. Quantitative structure-activity relationship model (R 2 = 0.88; Q 2 loo = 0.77; F = 33.69) for the inhibition of soybean lipoxygenase was obtained with descriptors Mor29m, G2u, and MAXDP. The molecular docking confirms experimentally obtained results, finding the binding affinity and interactions with the active sites of soybean LOX-3.

11.
Antioxidants (Basel) ; 11(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35624834

RESUMEN

The feeding of domestic animals with diets in which polyphenols are present is increasingly attracting the attention of nutritionists and scientists. This review summarizes the knowledge regarding polyphenols' possible positive and negative effects and their bioavailability. The bioavailability of substances is a prerequisite for any postabsorption effect in vivo. Positive and negative properties have been confirmed in previous studies on the diets of domestic animals rich in polyphenols, such as secondary metabolites of plants. Free radicals are formed in every organism, leading to oxidative stress. Free radicals are highly reactive molecules and can react in cells with macromolecules and can cause damage, including in reproductive cells. Some polyphenols at specific concentrations have antioxidant properties that positively affect animal reproduction by improving the quality of male and female gametes. The intake of phytoestrogens that mimic estrogen function can induce various pathological conditions in the female reproductive tract, including ovarian, fallopian, and uterine dysfunction. The metabolism of genistein and daidzein yields the metabolites equol and p-phenyl-phenol, leading to a decline in cow fertilization. The findings so far confirm that numerous questions still need to be answered. This review points out the importance of using polyphenols that have both benificial and some unfavorable properties in specific diets.

12.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408596

RESUMEN

Coumarin derivatives have been reported as strong antifungal agents against various phytopathogenic fungi. In this study, inhibitory effects of nine coumarinyl Schiff bases were evaluated against the plant pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiourum). The compounds were demonstrated to be efficient antifungal agents against Macrophomina phaseolina. The results of molecular docking on the six enzymes related to the antifungal activity suggested that the tested compounds act against plant pathogenic fungi, inhibiting plant cell-wall-degrading enzymes such as endoglucanase I and pectinase. Neither compound exhibited inhibitory effects against two beneficial bacteria (Bacillus mycoides and Bradyrhizobium japonicum) and two entomopathogenic nematodes. However, compound 9 was lethal (46.25%) for nematode Heterorhabditis bacteriophora and showed an inhibitory effect against acetylcholinesterase (AChE) (31.45%), confirming the relationship between these two activities. Calculated toxicity and the pesticide-likeness study showed that compound 9 was the least lipophilic compound with the highest aquatic toxicity. A molecular docking study showed that compounds 9 and 8 bind directly to the active site of AChE. Coumarinyl Schiff bases are promising active components of plant protection products, safe for the environment, human health, and nontarget organisms.


Asunto(s)
Ascomicetos , Fusarium , Nematodos , Acetilcolinesterasa/farmacología , Animales , Antifúngicos/química , Antifúngicos/farmacología , Bacterias , Hongos , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/microbiología , Plantas , Bases de Schiff/farmacología , Suelo
13.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163979

RESUMEN

The aim of this study was to determine the effects of defoliation performed in the Babica red grape variety on the volatile compounds in produced wine. Three treatments were performed during 2017 and 2018: the removal of six leaves before flowering (FL) and at the end of veraison (VER), as well as control (C). Volatile compounds were analyzed using a gas chromatograph coupled to a mass spectrophotometric detector. Results were statistically evaluated by analysis of variance (ANOVA at the p = 0.05 level) and principal component analysis (PCA). Defoliation treatments were affected by the concentration of several compounds, but only in one year. The VER2017 treatment significantly increased the concentration of three aliphatic esters up to 8 C atoms and octanoic acid ethyl ester. The FL2017 treatment increased the concentration of three aliphatic alcohols. The FL2018 treatment has significantly enhanced the concentration ethyl cinnamate but decreased the concentrations of eugenol and dihydro-2-methyl-3(2H)-thiophenone. Both defoliation treatments reduced the concentration of γ-decanolactone in 2017. Aldehydes, monoterpenoles, and monoterpenes remained unaffected by the defoliation treatments. Vintage was found to be the largest source of variability for most volatile compounds under investigation, which was confirmed by PCA. The effect of defoliation in the mild-Mediterranean climate was found to mostly depend on seasonal weather conditions.


Asunto(s)
Defoliantes Químicos/efectos adversos , Vitis/química , Vitis/metabolismo , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases/métodos , Clima , Frutas/química , Odorantes/análisis , Hojas de la Planta/química , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/química , Tiempo (Meteorología) , Vino/análisis
14.
J Biomol Struct Dyn ; 40(19): 9429-9442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34033727

RESUMEN

Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Hidroxicloroquina , Humanos , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Hidroxicloroquina/química , Sulfato de Zinc , Antivirales/farmacología , Antivirales/química , Azitromicina/química , Simulación del Acoplamiento Molecular
15.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198854

RESUMEN

Dipeptidyl peptidase III (DPP III), a zinc-dependent exopeptidase, is a member of the metalloproteinase family M49 with distribution detected in almost all forms of life. Although the physiological role of human DPP III (hDPP III) is not yet fully elucidated, its involvement in pathophysiological processes such as mammalian pain modulation, blood pressure regulation, and cancer processes, underscores the need to find new hDPP III inhibitors. In this research, five series of structurally different coumarin derivatives were studied to provide a relationship between their inhibitory profile toward hDPP III combining an in vitro assay with an in silico molecular modeling study. The experimental results showed that 26 of the 40 tested compounds exhibited hDPP III inhibitory activity at a concentration of 10 µM. Compound 12 (3-benzoyl-7-hydroxy-2H-chromen-2-one) proved to be the most potent inhibitor with IC50 value of 1.10 µM. QSAR modeling indicates that the presence of larger substituents with double and triple bonds and aromatic hydroxyl groups on coumarin derivatives increases their inhibitory activity. Docking predicts that 12 binds to the region of inter-domain cleft of hDPP III while binding mode analysis obtained by MD simulations revealed the importance of 7-OH group on the coumarin core as well as enzyme residues Ile315, Ser317, Glu329, Phe381, Pro387, and Ile390 for the mechanism of the binding pattern and compound 12 stabilization. The present investigation, for the first time, provides an insight into the inhibitory effect of coumarin derivatives on this human metalloproteinase.

16.
Chemometr Intell Lab Syst ; 217: 104394, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34312571

RESUMEN

SARS-CoV-2 has rapidly emerged as a global pandemic with high infection rate. At present, there is no drug available for this deadly disease. Recently, Mpro (Main Protease) enzyme has been identified as essential proteins for the survival of this virus. In the present work, Lipinski's rules and molecular docking have been performed to identify plausible inhibitors of Mpro using food compounds. For virtual screening, a database of food compounds was downloaded and then filtered using Lipinski's rule of five. Then, molecular docking was accomplished to identify hits using Mpro protein as the target enzyme. This led to identification of a Spermidine derivative as a hit. In the next step, Spermidine derivatives were collected from PubMed and screened for their binding with Mpro protein. In addition, molecular dynamic simulations (200 ns) were executed to get additional information. Some of the compounds are found to have strong affinity for Mpro, therefore these hits could be used to develop a therapeutic agent for SARS-CoV-2.

17.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298898

RESUMEN

The aim was to study the inhibitory effects of coumarin derivatives on the plant pathogenic fungi, as well as beneficial bacteria and nematodes. The antifungal assay was performed on four cultures of phytopathogenic fungi by measuring the radial growth of the fungal colonies. Antibacterial activity was determined by the broth microdilution method performed on two beneficial soil organisms. Nematicidal activity was tested on two entomopathogenic nematodes. The quantitative structure-activity relationship (QSAR) model was generated by genetic algorithm, and toxicity was estimated by T.E.S.T. software. The mode of inhibition of enzymes related to the antifungal activity is elucidated by molecular docking. Coumarin derivatives were most effective against Macrophomina phaseolina and Sclerotinia sclerotiorum, but were not harmful against beneficial nematodes and bacteria. A predictive QSAR model was obtained for the activity against M. phaseolina (R2tr = 0.78; R2ext = 0.67; Q2loo = 0.67). A QSAR study showed that multiple electron-withdrawal groups, especially at position C-3, enhanced activities against M. phaseolina, while the hydrophobic benzoyl group at the pyrone ring, and -Br, -OH, -OCH3, at the benzene ring, may increase inhibition of S. sclerotiourum. Tested compounds possibly act inhibitory against plant wall-degrading enzymes, proteinase K. Coumarin derivatives are the potentially active ingredient of environmentally friendly plant-protection products.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Cumarinas/farmacología , Plantas/microbiología , Ascomicetos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Simulación del Acoplamiento Molecular/métodos , Relación Estructura-Actividad Cuantitativa
18.
Curr Comput Aided Drug Des ; 17(1): 123-133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31878861

RESUMEN

BACKGROUND: Studies on the interaction between bioactive molecules and HIV-1 virus have been the focus of recent research in the scope of medicinal chemistry and pharmacology. OBJECTIVE: Investigating the structural parameters and physico-chemical properties of elucidating and identifying the antiviral pharmacophore sites. METHODS: A mixed computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been developed for the identification of physico-chemical parameters governing the bioactivity of 22 3-hydroxy-indolin-2-one derivatives of diacetyl-L-tartaric acid and aromatic amines containing combined antiviral/antitumor/antibacterial pharmacophore sites. Molecular docking study was carried out with HIV-1 integrase (pdb ID: 5KGX) in order to provide information about interactions in the binding site of the enzyme. RESULTS: The POM analyses of physico-chemical properties and geometrical parameters of compounds 3a-5j, show that they are bearing a two combined (O,O)-pockets leading to a special platform which is able to coordinate two transition metals. The increased activity of series 3a-5j, as compared to standard drugs, contains (Osp2,O sp3,O sp2)-pharmacophore site. The increase in bioactivity from 4b (R1, R2 = H, H) to 3d (R1, R2 = 4-Br, 2-OCH3) could be attributed to the existence of π-charge transfer from para-bromo-phenyl to its amid group (COδ---NHδ+). Similar to the indole-based reference ligand (pdb: 7SK), compound 3d forms hydrogen bonding interactions between the residues Glu170, Thr174 and His171 of HIV-1 integrase in the catalytic core domain of the enzyme. CONCLUSION: Study confirmed the importance of oxygen atoms, especially from the methoxy group of the phenyl ring, and electrophilic amide nitrogen atom for the formation of interactions.


Asunto(s)
Fármacos Anti-VIH/farmacología , Integrasa de VIH/efectos de los fármacos , Indoles/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Sitios de Unión , Teoría Funcional de la Densidad , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Indoles/síntesis química , Indoles/química , Ligandos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
19.
Pharmaceuticals (Basel) ; 13(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709129

RESUMEN

Lipoxygenases (LOXs) are a family of enzymes found in plants, mammals, and microorganisms. In animals and plants, the enzyme has the capability for the peroxidation of unsaturated fatty acids. Although LOXs participate in the plant defense system, the enzyme's metabolites can have numerous negative effects on human health. Therefore, many types of research are searching for compounds that can inhibit LOXs. The best quantitative structure-activity relationship (QSAR) model was obtained using a Genetic Algorithm (GA). Molecular docking was performed with iGEMDOCK. The inhibition of lipoxygenase was in the range of 7.1 to 96.6%, and the inhibition of lipid peroxidation was 7.0-91.0%. Among the synthesized compounds, the strongest inhibitor of soybean LOX-3 (96.6%) was found to be 3-benzoyl-7-(benzyloxy)-2H-chromen-2-one. A lipid peroxidation inhibition of 91.0% was achieved with ethyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate. The docking scores for the soybean LOX-3 and human 5-LOX also indicated that this compound has the best affinity for these LOX enzymes. The best multiple linear QSAR model contains the atom-centered fragment descriptors C-06, RDF035p, and HATS8p. QSAR and molecular docking studies elucidated the structural features important for the enhanced inhibitory activity of the most active compounds, such as the presence of the benzoyl ring at the 3-position of coumarin's core. Compounds with benzoyl substituents are promising candidates as potent lipoxygenase inhibitors.

20.
Bioorg Chem ; 100: 103850, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460177

RESUMEN

Two known polyphenols named apigenin 7-O-ß-d-glucopyranoside (S1) and querctine-3-O-glucoside (S2), along with another two new compounds apigenin 4'-geranyl-8-glucopyranosyl-7-O-α-glucopyranoside (S3) and apigenin 4'-pernyl-8-glucopyranosyl -7-O-α-glucopyranoside (S4), were isolated from the leaves of Cupressus sempervirens. Structure elucidation of the isolated polyphenols was established on the basis of detailed spectroscopic analysis like 1D and 2D NMR analyses including 1H NMR, 13C NMR, COSY, DEPT, HMQC, UV, and Electron Spray Ionization Mass Spectroscopy (ESI-MS). Density Functional Theory (DFT) of computational, Petra/Osiris/Molinspiration (POM), and docking analyses methods were applied in the structural validation of new isolated compounds. The isolated compounds S1-S4 showed significant cytotoxicity against human hepatocellular liver carcinoma HepG2 cells, MCF-7, HC116 and A549.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Cupressus/química , Flavonoides/química , Flavonoides/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Flavonoides/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...