Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
3.
Crit Care ; 28(1): 170, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769582

RESUMEN

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Consenso , Técnica Delphi , Hipotermia Inducida , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Hipotermia Inducida/métodos , Hipotermia Inducida/normas , Unidades de Cuidados Intensivos/organización & administración , Presión Intracraneal/fisiología , Encuestas y Cuestionarios
4.
Neurocrit Care ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811514

RESUMEN

BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.

5.
J Clin Monit Comput ; 38(4): 827-845, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38512360

RESUMEN

Technologies for monitoring organ function are rapidly advancing, aiding physicians in the care of patients in both operating rooms (ORs) and intensive care units (ICUs). Some of these emerging, minimally or non-invasive technologies focus on monitoring brain function and ensuring the integrity of its physiology. Generally, the central nervous system is the least monitored system compared to others, such as the respiratory, cardiovascular, and renal systems, even though it is a primary target in most therapeutic strategies. Frequently, the effects of sedatives, hypnotics, and analgesics are entirely unpredictable, especially in critically ill patients with multiple organ failure. This unpredictability exposes them to the risks of inadequate or excessive sedation/hypnosis, potentially leading to complications and long-term negative outcomes. The International PRactice On TEChnology neuro-moniToring group (I-PROTECT), comprised of experts from various fields of clinical neuromonitoring, presents this document with the aim of reviewing and standardizing the primary non-invasive tools for brain monitoring in anesthesia and intensive care practices. The focus is particularly on standardizing the nomenclature of different parameters generated by these tools. The document addresses processed electroencephalography, continuous/quantitative electroencephalography, brain oxygenation through near-infrared spectroscopy, transcranial Doppler, and automated pupillometry. The clinical utility of the key parameters available in each of these tools is summarized and explained. This comprehensive review was conducted by a panel of experts who deliberated on the included topics until a consensus was reached. Images and tables are utilized to clarify and enhance the understanding of the clinical significance of non-invasive neuromonitoring devices within these medical settings.


Asunto(s)
Encéfalo , Cuidados Críticos , Electroencefalografía , Espectroscopía Infrarroja Corta , Ultrasonografía Doppler Transcraneal , Humanos , Electroencefalografía/métodos , Ultrasonografía Doppler Transcraneal/métodos , Espectroscopía Infrarroja Corta/métodos , Cuidados Críticos/métodos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Unidades de Cuidados Intensivos , Oxígeno , Monitorización Neurofisiológica/métodos , Anestesia/métodos
6.
J Ultrasound Med ; 43(5): 979-992, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279568

RESUMEN

Transcranial Doppler (TCD) is a repeatable, at-the-bedside, helpful tool for confirming cerebral circulatory arrest (CCA). Despite its variable accuracy, TCD is increasingly used during brain death determination, and it is considered among the optional ancillary tests in several countries. Among its limitations, the need for skilled operators with appropriate knowledge of typical CCA patterns and the lack of adequate acoustic bone windows for intracranial arteries assessment are critical. The purpose of this review is to describe how to evaluate cerebral circulatory arrest in the intensive care unit with TCD and transcranial duplex color-coded doppler (TCCD).


Asunto(s)
Muerte Encefálica , Encéfalo , Adulto , Humanos , Muerte Encefálica/diagnóstico por imagen , Ultrasonografía Doppler Transcraneal , Ultrasonografía Doppler en Color , Arterias , Circulación Cerebrovascular
7.
J Clin Monit Comput ; 38(2): 407-414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37736801

RESUMEN

The presence of abnormal electrocardiograms in individuals without known organic heart disease is one of the most common manifestations of cardiac dysfunction occurring during acute non traumatic brain injury. The primary goal of the present review is to provide an overview of the available data and literature regarding the presence of new-onset electrocardiographic (ECG) alterations in acute non traumatic brain injury. The secondary aim is to identify the incidence of ECG alterations and consider the prognostic significance of new-onset ECG changes in this setting. To do so, English language articles from January 2000 to January 2022 were included from PubMed using the following keywords: "electrocardiogram and subarachnoid hemorrhage", "electrocardiogram and intracranial hemorrhage", "Q-T interval and subarachnoid hemorrhage ", "Q-T interval and intracranial bleeding ", "Q-T interval and intracranial hemorrhage", and "brain and heart- interaction in stroke". Of 3162 papers, 27 original trials looking at electrocardiogram alterations in acute brain injury were included following the PRISMA guideline. ECG abnormalities associated with acute brain injury could potentially predict poor patient outcomes. They could even herald the future development of neurogenic pulmonary edema (NPE), delayed cerebral ischemia (DCI), and even in-hospital death. In particular, patients with SAH are at increased risk of having severe ventricular dysrhythmias. These may contribute to a high mortality rate and to poor functional outcome at 3 months. The current data on ECG QT dispersion and mortality appear less clearly associated. While some patients demonstrated poor outcomes, others showed no relationship with poor outcomes or increased in-hospital mortality. Observing ECG alterations carefully after cerebral damage is important in the critical care of these patients as it can expose preexisting myocardial disease and change prognosis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Cardiopatías , Hemorragia Subaracnoidea , Humanos , Lesiones Encefálicas/complicaciones , Mortalidad Hospitalaria , Electrocardiografía , Hemorragias Intracraneales/complicaciones , Arritmias Cardíacas
9.
Front Neurol ; 14: 1235734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073634

RESUMEN

Introduction: Long-term weakness is common in survivors of COVID-19-associated acute respiratory distress syndrome (CARDS). We longitudinally assessed the predictors of muscle weakness in patients evaluated 6 and 12 months after intensive care unit discharge with in-person visits. Methods: Muscle strength was measured by isometric maximal voluntary contraction (MVC) of the tibialis anterior muscle. Candidate predictors of muscle weakness were follow-up time, sex, age, mechanical ventilation duration, use of steroids in the intensive care unit, the compound muscle action potential of the tibialis anterior muscle (CMAP-TA-S100), a 6-min walk test, severe fatigue, depression and anxiety, post-traumatic stress disorder, cognitive assessment, and body mass index. We also compared the clinical tools currently available for the evaluation of muscle strength (handgrip strength and Medical Research Council sum score) and electrical neuromuscular function (simplified peroneal nerve test [PENT]) with more objective and robust measures of force (MVC) and electrophysiological evaluation of the neuromuscular function of the tibialis anterior muscle (CMAP-TA-S100) for their essential role in ankle control. Results: MVC improved at 12 months compared with 6 months. CMAP-TA-S100 (P = 0.016) and the presence of severe fatigue (P = 0.036) were independent predictors of MVC. MVC was strongly associated with handgrip strength, whereas CMAP-TA-S100 was strongly associated with PENT. Discussion: Electrical neuromuscular abnormalities and severe fatigue are independently associated with reduced MVC and can be used to predict the risk of long-term muscle weakness in CARDS survivors.

10.
Crit Care ; 27(1): 439, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957759

RESUMEN

BACKGROUND: Severe weakness associated with critical illness (CIW) is common. This narrative review summarizes the latest scientific insights and proposes a guide for clinicians to optimize the diagnosis and management of the CIW during the various stages of the disease from the ICU to the community stage. MAIN BODY: CIW arises as diffuse, symmetrical weakness after ICU admission, which is an important differentiating factor from other diseases causing non-symmetrical muscle weakness or paralysis. In patients with adequate cognitive function, CIW can be easily diagnosed at the bedside using manual muscle testing, which should be routinely conducted until ICU discharge. In patients with delirium or coma or those with prolonged, severe weakness, specific neurophysiological investigations and, in selected cases, muscle biopsy are recommended. With these exams, CIW can be differentiated into critical illness polyneuropathy or myopathy, which often coexist. On the general ward, CIW is seen in patients with prolonged previous ICU treatment, or in those developing a new sepsis. Respiratory muscle weakness can cause neuromuscular respiratory failure, which needs prompt recognition and rapid treatment to avoid life-threatening situations. Active rehabilitation should be reassessed and tailored to the new patient's condition to reduce the risk of disease progression. CIW is associated with long-term physical, cognitive and mental impairments, which emphasizes the need for a multidisciplinary model of care. Follow-up clinics for patients surviving critical illness may serve this purpose by providing direct clinical support to patients, managing referrals to other specialists and general practitioners, and serving as a platform for research to describe the natural history of post-intensive care syndrome and to identify new therapeutic interventions. This surveillance should include an assessment of the activities of daily living, mood, and functional mobility. Finally, nutritional status should be longitudinally assessed in all ICU survivors and incorporated into a patient-centered nutritional approach guided by a dietician. CONCLUSIONS: Early ICU mobilization combined with the best evidence-based ICU practices can effectively reduce short-term weakness. Multi-professional collaborations are needed to guarantee a multi-dimensional evaluation and unitary community care programs for survivors of critical illnesses.


Asunto(s)
Fragilidad , Enfermedades Musculares , Polineuropatías , Humanos , Enfermedad Crítica/rehabilitación , Unidades de Cuidados Intensivos , Actividades Cotidianas , Enfermedades Musculares/complicaciones , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/terapia , Debilidad Muscular/diagnóstico , Debilidad Muscular/etiología , Debilidad Muscular/terapia , Fragilidad/complicaciones , Polineuropatías/complicaciones , Polineuropatías/diagnóstico , Polineuropatías/terapia
11.
Lancet Neurol ; 22(10): 925-933, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652068

RESUMEN

BACKGROUND: Improving the prognostication of acute brain injury is a key element of critical care. Standard assessment includes pupillary light reactivity testing with a hand-held light source, but findings are interpreted subjectively; automated pupillometry might be more precise and reproducible. We aimed to assess the association of the Neurological Pupil index (NPi)-a quantitative measure of pupillary reactivity computed by automated pupillometry-with outcomes of patients with severe non-anoxic acute brain injury. METHODS: ORANGE is a multicentre, prospective, observational cohort study at 13 hospitals in eight countries in Europe and North America. Patients admitted to the intensive care unit after traumatic brain injury, aneurysmal subarachnoid haemorrhage, or intracerebral haemorrhage were eligible for the study. Patients underwent automated infrared pupillometry assessment every 4 h during the first 7 days after admission to compute NPi, with values ranging from 0 to 5 (with abnormal NPi being <3). The co-primary outcomes of the study were neurological outcome (assessed with the extended Glasgow Outcome Scale [GOSE]) and mortality at 6 months. We used logistic regression to model the association between NPi and poor neurological outcome (GOSE ≤4) at 6 months and Cox regression to model the relation of NPi with 6-month mortality. This study is registered with ClinicalTrials.gov, NCT04490005. FINDINGS: Between Nov 1, 2020, and May 3, 2022, 514 patients (224 with traumatic brain injury, 139 with aneurysmal subarachnoid haemorrhage, and 151 with intracerebral haemorrhage) were enrolled. The median age of patients was 61 years (IQR 46-71), and the median Glasgow Coma Scale score on admission was 8 (5-11). 40 071 NPi measurements were taken (median 40 per patient [20-50]). The 6-month outcome was assessed in 497 (97%) patients, of whom 160 (32%) patients died, and 241 (47%) patients had at least one recording of abnormal NPi, which was associated with poor neurological outcome (for each 10% increase in the frequency of abnormal NPi, adjusted odds ratio 1·42 [95% CI 1·27-1·64]; p<0·0001) and in-hospital mortality (adjusted hazard ratio 5·58 [95% CI 3·92-7·95]; p<0·0001). INTERPRETATION: NPi has clinically and statistically significant prognostic value for neurological outcome and mortality after acute brain injury. Simple, automatic, repeat automated pupillometry assessment could improve the continuous monitoring of disease progression and the dynamics of outcome prediction at the bedside. FUNDING: NeurOptics.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Hemorragia Subaracnoidea , Humanos , Persona de Mediana Edad , Anciano , Pupila , Hemorragia Subaracnoidea/diagnóstico , Estudios Prospectivos , Lesiones Encefálicas/diagnóstico , Lesiones Traumáticas del Encéfalo/diagnóstico , Hemorragia Cerebral
12.
Br J Anaesth ; 131(2): 294-301, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225535

RESUMEN

BACKGROUND: There is a lack of consistent, evidence-based guidelines for the management of patients with fever after brain injury. The aim was to update previously published consensus recommendations on targeted temperature management after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require admission to critical care. METHODS: A modified Delphi consensus, the Neuroprotective Therapy Consensus Review (NTCR), included 19 international neuro-intensive care experts with a subspecialty interest in the acute management of intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke. An online, anonymised survey was completed ahead of the meeting before the group came together to consolidate consensus and finalise recommendations on targeted temperature management. A threshold of ≥80% for consensus was set for all statements. RESULTS: Recommendations were formulated based on existing evidence, literature review, and consensus. After intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require critical care admission, core temperature should ideally be monitored continuously and maintained between 36.0°C and 37.5°C using automated feedback-controlled devices, where possible. Targeted temperature management should be commenced within 1 h of first fever identification with appropriate diagnosis and treatment of infection, maintained for as long as the brain remains at risk of secondary injury, and rewarming should be controlled. Shivering should be monitored and managed to limit risk of secondary injury. Following a single protocol for targeted temperature management across intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke is desirable. CONCLUSIONS: Based on a modified Delphi expert consensus process, these guidelines aim to improve the quality of targeted temperature management for patients after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in critical care, highlighting the need for further research to improve clinical guidelines in this setting.


Asunto(s)
Isquemia Encefálica , Hipotermia Inducida , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Isquemia Encefálica/complicaciones , Isquemia Encefálica/terapia , Hemorragia Cerebral/complicaciones , Hipotermia Inducida/métodos
14.
Acta Neurochir (Wien) ; 165(4): 865-874, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36847979

RESUMEN

PURPOSE: While clinical practice suggests that knowing the cerebral autoregulation (CA) status of traumatic brain injury (TBI) patients is crucial in assessing the best treatment, evidence in pediatric TBI (pTBI) is limited. The pressure reactivity index (PRx) is a surrogate method for the continuous estimation of CA in adults; however, calculations require continuous, high-resolution monitoring data. We evaluate an ultra-low-frequency pressure reactivity index (UL-PRx), based on data sampled at ∼5-min periods, and test its association with 6-month mortality and unfavorable outcome in a cohort of pTBI patients. METHODS: Data derived from pTBI patients (0-18 years) requiring intracranial pressure (ICP) monitoring were retrospectively collected and processed in MATLAB using an in-house algorithm. RESULTS: Data on 47 pTBI patients were included. UL-PRx mean values, ICP, cerebral perfusion pressure (CPP), and derived indices showed significant association with 6-month mortality and unfavorable outcome. A value of UL-PRx of 0.30 was identified as the threshold to better discriminate both surviving vs deceased patients (AUC: 0.90), and favorable vs unfavorable outcomes (AUC: 0.70) at 6 months. At multivariate analysis, mean UL-PRx and % time with ICP > 20 mmHg, remained significantly associated with 6-month mortality and unfavorable outcome, even when adjusted for International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)-Core variables. In six patients undergoing secondary decompressive craniectomy, no significant changes in UL-PRx were found after surgery. CONCLUSIONS: UL-PRx is associated with a 6-month outcome even if adjusted for IMPACT-Core. Its application in pediatric intensive care unit could be useful to evaluate CA and offer possible prognostic and therapeutic implications in pTBI patients. CLINICALTRIALS: GOV: NCT05043545, September 14, 2021, retrospectively registered.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Adulto , Niño , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/cirugía , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Presión Intracraneal/fisiología , Pronóstico , Estudios Retrospectivos
15.
Intensive Care Med Exp ; 11(1): 4, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36658406

RESUMEN

BACKGROUND: To date cardiac arrest (CA) remains a frequent cause of morbidity and mortality: despite advances in cardiopulmonary resuscitation (CPR), survival is still burdened by hypoxic-ischemic brain injury (HIBI), and poor neurological outcome, eventually leading to withdrawal of life sustaining treatment (WLST). The aim of CPR is cardiac pump support to preserve organ perfusion, until normal cardiac function is restored. However, clinical parameters of target organ end-perfusion during CPR, particularly brain perfusion, are still to be identified. In this context, electroencephalography (EEG) and its derivatives, such as processed EEG, could be used to assess brain function during CA. OBJECTIVES: We aimed to review literature regarding the feasibility of EEG and processed or raw EEG monitoring during CPR. METHODS: A review of the available literature was performed and consisted of mostly case reports and observational studies in both humans and animals, for a total number of 22 relevant studies. RESULTS: The research strategy identified 22 unique articles. 4 observational studies were included and 6 animal testing studies in swine models. The remaining studies were case reports. Literature regarding this topic consists of conflicting results, containing studies where the feasibility of EEG during CPR was positive, and others where the authors reached opposite conclusions. Furthermore, the level of evidence, in general, remains low. DISCUSSION: EEG may represent a useful tool to assess CPR effectiveness. A multimodal approach including other non-invasive tools such as, quantitative infrared pupillometry and transcranial Doppler, could help to optimize the quality of resuscitation maneuvers.

16.
World J Emerg Surg ; 18(1): 5, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624517

RESUMEN

BACKGROUND: Severe traumatic brain-injured (TBI) patients should be primarily admitted to a hub trauma center (hospital with neurosurgical capabilities) to allow immediate delivery of appropriate care in a specialized environment. Sometimes, severe TBI patients are admitted to a spoke hospital (hospital without neurosurgical capabilities), and scarce data are available regarding the optimal management of severe isolated TBI patients who do not have immediate access to neurosurgical care. METHODS: A multidisciplinary consensus panel composed of 41 physicians selected for their established clinical and scientific expertise in the acute management of TBI patients with different specializations (anesthesia/intensive care, neurocritical care, acute care surgery, neurosurgery and neuroradiology) was established. The consensus was endorsed by the World Society of Emergency Surgery, and a modified Delphi approach was adopted. RESULTS: A total of 28 statements were proposed and discussed. Consensus was reached on 22 strong recommendations and 3 weak recommendations. In three cases, where consensus was not reached, no recommendation was provided. CONCLUSIONS: This consensus provides practical recommendations to support clinician's decision making in the management of isolated severe TBI patients in centers without neurosurgical capabilities and during transfer to a hub center.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Lesiones Traumáticas del Encéfalo/cirugía , Hospitales , Encéfalo , Procedimientos Neuroquirúrgicos , Hospitalización
17.
J Neurosurg Anesthesiol ; 35(3): 313-321, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499152

RESUMEN

BACKGROUND: The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of cerebral autoregulation and a predictor of unfavorable outcome after traumatic brain injury (TBI). However, calculation of PRx require continuous high-resolution monitoring currently limited to specialized intensive care units. The aim of this study was to evaluate a new index, the ultra-low-frequency PRx (UL-PRx) sampled at ∼0.0033 Hz at ∼5 minutes periods, and to investigate its association with outcome. METHODS: Demographic data, admission Glasgow coma scale, in-hospital mortality and Glasgow outcome scale extended at 12 months were extracted from electronic records. The filtering and preparation of time series of intracranial pressure (ICP), mean arterial pressure and cerebral perfusion pressure (CPP), and calculation of the indices (UL-PRx, Δ-optimal CPP), were performed in MATLAB using an in-house algorithm. RESULTS: A total of 164 TBI patients were included in the study; in-hospital and 12-month mortality was 29.3% and 38.4%, respectively, and 64% of patients had poor neurological outcome at 12 months. On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month mortality. After adjusting for age, Glasgow coma scale, ICP and CPP, mean UL-PRx and UL-PRx thresholds of 0 and +0.25 remained associated with 12-month mortality. Similar findings were obtained for in-hospital mortality. For mean UL-PRx, the area under the receiver operating characteristic curves for in-hospital and 12-month mortality were 0.78 (95% confidence interval [CI]: 0.69-0.87; P <0.001) and 0.70 (95% CI: 0.61-0.79; P <0.001), respectively, and 0.65 (95% CI: 0.57-0.74; P =0.001) for 12-month neurological outcome. CONCLUSIONS: Our findings indicate that ultra-low-frequency sampling might provide sufficient resolution to derive information about the state of cerebrovascular autoregulation and prediction of 12-month outcome in TBI patients.


Asunto(s)
Presión Arterial , Lesiones Traumáticas del Encéfalo , Humanos , Lesiones Traumáticas del Encéfalo/complicaciones , Circulación Cerebrovascular/fisiología , Escala de Consecuencias de Glasgow , Presión Intracraneal/fisiología , Estudios Retrospectivos
18.
Neurocrit Care ; 38(2): 296-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35896766

RESUMEN

BACKGROUND: The use of processed electroencephalography (pEEG) for depth of sedation (DOS) monitoring is increasing in anesthesia; however, how to use of this type of monitoring for critical care adult patients within the intensive care unit (ICU) remains unclear. METHODS: A multidisciplinary panel of international experts consisting of 21 clinicians involved in monitoring DOS in ICU patients was carefully selected on the basis of their expertise in neurocritical care and neuroanesthesiology. Panelists were assigned four domains (techniques for electroencephalography [EEG] monitoring, patient selection, use of the EEG monitors, competency, and training the principles of pEEG monitoring) from which a list of questions and statements was created to be addressed. A Delphi method based on iterative approach was used to produce the final statements. Statements were classified as highly appropriate or highly inappropriate (median rating ≥ 8), appropriate (median rating ≥ 7 but < 8), or uncertain (median rating < 7) and with a strong disagreement index (DI) (DI < 0.5) or weak DI (DI ≥ 0.5 but < 1) consensus. RESULTS: According to the statements evaluated by the panel, frontal pEEG (which includes a continuous colored density spectrogram) has been considered adequate to monitor the level of sedation (strong consensus), and it is recommended by the panel that all sedated patients (paralyzed or nonparalyzed) unfit for clinical evaluation would benefit from DOS monitoring (strong consensus) after a specific training program has been performed by the ICU staff. To cover the gap between knowledge/rational and routine application, some barriers must be broken, including lack of knowledge, validation for prolonged sedation, standardization between monitors based on different EEG analysis algorithms, and economic issues. CONCLUSIONS: Evidence on using DOS monitors in ICU is still scarce, and further research is required to better define the benefits of using pEEG. This consensus highlights that some critically ill patients may benefit from this type of neuromonitoring.


Asunto(s)
Anestesia , Enfermedad Crítica , Humanos , Adulto , Consenso , Cuidados Críticos/métodos , Electroencefalografía/métodos
20.
Life (Basel) ; 12(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36556396

RESUMEN

Excessive sedation is associated with poor outcome in critically ill acute respiratory distress syndrome (ARDS) patients. Whether this prognostic effect varies among ARDS patients with and without COVID-19 has yet to be determined. We compared the prognostic value of excessive sedation­in terms of delirium, length of stay in intensive care unit (ICU-LOS) and ICU mortality­between COVID-19 and non-COVID-19 critically ill ARDS patients. This was a second analysis of prospectively collected data in four European academic centers pertaining to 101 adult critically ill ARDS patients with and without COVID-19 disease. Depth of sedation (DOS) and delirium were monitored through processed electroencephalogram (EEG) and the Confusion Assessment Method for ICU (CAM-ICU). Our main exposure was excessive sedation and how it relates to the presence of delirium, ICU-LOS and ICU mortality. The criterion for excessive sedation was met in 73 (72.3%) patients; of these, 15 (82.2%) and 58 (69.1%) were in non-COVID-19 and COVID-19 ARDS groups, respectively. The criteria of delirium were met in 44 patients (60.3%). Moreover, excessive sedation was present in 38 (86.4%) patients with delirium (p < 0.001). ICU death was ascertained in 41 out of 101 (41.0%) patients; of these, 37 (90.2%) had excessive sedation (p < 0.001). The distribution of ICU-LOS among excessive-sedated and non-sedated patients was 22 (16−27) vs. 14 (10.5−19.5) days (p < 0.001), respectively. In a multivariable framework, excessive sedation was independently associated with the development of delirium (p = 0.001), increased ICU mortality (p = 0.009) and longer ICU-LOS (p = 0.000), but only in COVID-19 ARDS patients. Independent of age and gender, excessive sedation might represent a risk factor for delirium in COVID-19 ARDS patients. Similarly, excessive sedation shows to be an independent predictor of ICU-LOS and ICU mortality. The use of continuous EEG-based depth of sedation (DOS) monitoring and delirium assessment in critically ill COVID-19 patients is warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA