Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36914885

RESUMEN

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Asunto(s)
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfocitos T , Inmunoterapia Adoptiva , Línea Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral
2.
Cell Oncol (Dordr) ; 46(1): 227-235, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36409438

RESUMEN

BACKGROUND: T cell receptor fusion constructs (TRuC) consist of an antibody-based single chain variable fragment (scFv) fused to a T cell receptor chain (TCR) and allow recognition of cancer cells in an HLA-independent manner. Unlike chimeric antigen receptors (CAR), TRuC are integrated into the TCR complex resulting in a functional chimera with novel specificity, whilst retaining TCR signaling. To further enhance anti-tumor function, we expressed a PD-1-CD28 fusion receptor in TRuC T cells aiming to prevent tumor-induced immune suppression and T cell anergy. METHODS: The activation level of engineered T cells was investigated in co-culture experiments with tumor cells followed by quantification of released cytokines using ELISA. To study T cell-mediated tumor cell lysis in vitro, impedance-based real-time tumor cell killing and LDH release was measured. Finally, two xenograft mouse cancer models were employed to explore the therapeutic potential of engineered T cells. RESULTS: In co-culture assays, co-expression of PD-1-CD28 enhanced cytokine production of TRuC T cells. This effect was dependent on PD-L1 to PD-1-CD28 interactions, as blockade of PD-L1 amplified IFN-γ production in unmodified TRuC T cells to a greater level compared to TRuC-PD-1-CD28 T cells. In vivo, PD-1-CD28 co-expression supported the anti-tumor efficacy of TRuC T cells in two xenograft mouse cancer models. CONCLUSION: Together, these results demonstrate the therapeutic potential of PD-1-CD28 co-expression in TRuC T cells to prevent PD-L1-induced T cell hypofunction.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Ratones , Animales , Antígenos CD28/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Mesotelina , Receptores de Antígenos de Linfocitos T/metabolismo , Línea Celular Tumoral
3.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34083764

RESUMEN

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfocitos T , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Mesotelina , Ratones , Neoplasias Pancreáticas/terapia , Receptores de Quimiocina/genética
5.
Leukemia ; 35(8): 2243-2257, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414484

RESUMEN

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia Experimental/terapia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Femenino , Humanos , Leucemia Experimental/inmunología , Leucemia Experimental/patología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32483603

RESUMEN

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Asunto(s)
Sistemas CRISPR-Cas , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores de Antígenos de Linfocitos T/genética , Transducción Genética , Células Tumorales Cultivadas
7.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31285373

RESUMEN

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Receptores ErbB/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/terapia , Linfocitos T/inmunología , Animales , Anticuerpos Biespecíficos/genética , Molécula de Adhesión Celular Epitelial/inmunología , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Mesotelina , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias Pancreáticas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncogene ; 38(26): 5174-5190, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30914800

RESUMEN

Altered expression of regulatory RNA-binding proteins (RBPs) in cancer leads to abnormal expression of mRNAs encoding many factors involved in cancer hallmarks. While conventional anticancer therapies usually target one pathway at a time, targeting key RBP would affect multiple genes and thus overcome drug resistance. Among the Tristetraprolin family of RBP, TIS11b/BRF1/ZFP36L1 mediates mRNA decay through binding to Adenylate/Uridylate (AU-rich elements) in mRNA 3'-untranslated region and recruitment of mRNA degradation enzymes. Here, we show that TIS11b is markedly underexpressed in three breast cancer cell lines, as well as in breast tumor samples. We hypothesized that restoring intracellular TIS11b levels could impair cancer cell phenotypic traits. We thus generated a derivative of TIS11b called R9-ZnCS334D, by combining N-terminal domain deletion, serine-to-aspartate substitution at position 334 to enhance the function of the protein and fusion to the cell-penetrating peptide polyarginine R9. R9-ZnCS334D not only blunted secretion of vascular endothelial growth factor (VEGF) but also inhibited proliferation, migration, invasion, and anchorage-independent growth of murine 4T1 or human MDA-MB-231 breast cancer cells. Moreover, R9-ZnCS334D prevented endothelial cell organization into vessel-like structures, suggesting that it could potentially target various cell types within the tumor microenvironment. In vivo, injection of R9-ZnCS334D in 4T1 tumors impaired tumor growth, decreased tumor hypoxia, and expression of the epithelial-to-mesenchymal transition (EMT) markers Snail, Vimentin, and N-cadherin. R9-ZnCS334D also hindered the expression of chemokines and proteins involved in cancer-related inflammation and invasion including Fractalkine (CX3CL1), SDF-1 (CXCL12), MCP-1 (CCL2), NOV (CCN3), and Pentraxin-3 (PTX3). Collectively, our data indicate that R9-ZnCS334D counteracts multiple traits of breast cancer cell aggressiveness and suggest that this novel protein could serve as the basis for innovative multi-target therapies in cancer.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Estabilidad del ARN , Factores Asociados con la Proteína de Unión a TATA/fisiología , Animales , Células COS , Carcinogénesis/metabolismo , Células Cultivadas , Chlorocebus aethiops , Femenino , Mutación con Ganancia de Función/fisiología , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estabilidad del ARN/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Factores Asociados con la Proteína de Unión a TATA/genética , Dedos de Zinc/genética
9.
Br J Cancer ; 120(1): 79-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429531

RESUMEN

BACKGROUND: CD16-chimeric antigen receptors (CAR) T cells recognise the Fc-portion of therapeutic antibodies, which can enable the selective targeting of different antigens. Limited evidence exists as to which CD16-CAR design and antibody partner might be most effective. We have hypothesised that the use of high-affinity CD16 variants, with increased Fc-terminus antibody affinity, combined with Fc-engineered antibodies, would provide superior CD16-CAR T cell efficacy. METHODS: CD16-CAR T (wild-type or variants) cells were co-cultured with Panc-1 pancreatic cancer, Raji lymphoma or A375 melanoma cells in the presence or absence of anti-CD20, anti-MCSP, wild-type or the glycoengineered antibody variants. The endpoints were proliferation, activation, and cytotoxicity in vitro. RESULTS: The CD16 158 V variant of CD16-CAR T cells showed increased cytotoxic activity against all the tested cancer cells in the presence of the wild-type antibody directed against MCSP or CD20. Glycoengineered antibodies enhanced CD16-CAR T cell activity irrespective of CD16 polymorphisms as compared with the wild-type antibody. The combination of the glycoengineered antibodies with the CD16-CAR 158 V variant synergised as seen by the increase in all endpoints. CONCLUSION: These results indicate that CD16-CAR with the high-affinity CD16 variant 158 V, combined with Fc-engineered antibodies, have high anti-tumour efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Inmunoterapia , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Polimorfismo Genético , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores de IgG/inmunología , Rituximab/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
10.
Blood ; 132(23): 2484-2494, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30275109

RESUMEN

The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Complejo CD3 , Leucemia Mieloide Aguda , Receptor de Muerte Celular Programada 1 , Proteínas Recombinantes de Fusión , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Anticuerpos de Cadena Única , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/uso terapéutico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Immunol ; 9: 1955, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214445

RESUMEN

Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand, PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune surveillance. We have recently demonstrated that antigen-specific CD8+ T cells transduced with a PD1-CD28 fusion protein are protected from PD-1-mediated inhibition. We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer and non-Hodgkin lymphoma. Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells. Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1 tumor cells also led to specific activation of CD4+ T cells. Cytokine release and T cell proliferation was most effective when tumor cells simultaneously encountered genetically engineered CD4+ and CD8+ T cells. Synergy between both cell populations was also observed for specific tumor cell lysis. T cell cytotoxicity was mediated via granzyme B release and mediated enhanced tumor control in vivo. Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed a predominant central memory phenotype over time. Different ratios of CD4+ and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2 secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2 and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells, since neutralization of IL-2 prevented the crosstalk between these cell populations. Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin lymphoma.


Asunto(s)
Traslado Adoptivo , Antígenos CD28/inmunología , Linfocitos T CD8-positivos , Linfoma no Hodgkin/terapia , Neoplasias Experimentales/terapia , Neoplasias Pancreáticas/terapia , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T Colaboradores-Inductores , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Antígenos CD28/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/trasplante , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptor de Muerte Celular Programada 1/genética , Proteínas Recombinantes de Fusión/genética , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/trasplante , Transducción Genética
12.
Front Oncol ; 8: 285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090763

RESUMEN

T cells have been established as core effectors for cancer therapy; this has moved the focus of therapeutic endeavors to effectively enhance or restore T cell tumoricidal activity rather than directly target cancer cells. Both antibodies targeting the checkpoint inhibitory molecules programmed death receptor 1 (PD1), PD-ligand 1 (PD-L1) and cytotoxic lymphocyte activated antigen 4 (CTLA4), as well as bispecific antibodies targeting CD3 and CD19 are now part of the standard of care. In particular, antibodies to checkpoint molecules have gained broad approval in a number of solid tumor indications, such as melanoma or non-small cell lung cancer based on their unparalleled efficacy. In contrast, the efficacy of bispecific antibody-derivatives is much more limited and evidence is emerging that their activity is regulated through diverse checkpoint molecules. In either case, both types of compounds have their limitations and most patients will not benefit from them in the long run. A major aspect under investigation is the lack of baseline antigen-specific T cells in certain patient groups, which is thought to render responses to checkpoint inhibition less likely. On the other hand, bispecific antibodies are also restricted by induced T cell anergy. Based on these considerations, combination of bispecific antibody mediated on-target T cell activation and reversal of anergy bears high promise. Here, we will review current evidence for such combinatorial approaches, as well as ongoing clinical investigations in this area. We will also discuss potential evidence-driven future avenues for testing.

13.
Proc Natl Acad Sci U S A ; 114(49): 12994-12999, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29150554

RESUMEN

IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1ß from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1ß to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucina-1beta/fisiología , Interleucinas/biosíntesis , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo Condicionados , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Interleucinas/metabolismo , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trasplante de Neoplasias , Transducción de Señal , Carga Tumoral , Interleucina-22
14.
Cancer Immunol Res ; 5(9): 730-743, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28778961

RESUMEN

Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos CD40/inmunología , Inmunoterapia , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Humanos , Inmunidad Celular , Interleucina-4/inmunología , Interleucinas/inmunología , Activación de Linfocitos/inmunología , Ratones , Neoplasias/patología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
15.
Mol Biol Cell ; 27(24): 3841-3854, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27708140

RESUMEN

TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3'-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein-protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Regiones no Traducidas 3' , Animales , Células COS , Técnicas de Cultivo de Célula , Chlorocebus aethiops , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Endorribonucleasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Tristetraprolina/metabolismo
16.
Oncoimmunology ; 5(3): e1105428, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27195186

RESUMEN

T cell infiltration at the tumor site has been identified as a major predictor for the efficacy of adoptive T cell therapy. The chemokine C-C motif ligand 22 (CCL22) is highly expressed by immune cells in murine and human pancreatic cancer. Expression of its corresponding receptor, C-C chemokine receptor type 4 (CCR4), is restricted to regulatory T cells (Treg). We show that transduction of cytotoxic T cells (CTL) with CCR4 enhances their immigration into a pancreatic cancer model. Further, we show that binding of CCR4 with CCL22 strengthens the binding of T cell LFA-1 to dendritic cell (DC) ICAM-1 and increases CTL activation. In vivo, in a model of subcutaneous pancreatic cancer, treatment of tumor-bearing mice with CCR4-transduced CTL led to the eradication of established tumors in 40% of the mice. In conclusion, CCR4 overexpression in CTL is a promising therapeutic strategy to enhance the efficacy of adoptive T cell transfer (ACT).

17.
Arch Toxicol ; 89(3): 393-404, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24777823

RESUMEN

Several studies indicate that the aryl hydrocarbon receptor (AHR), which plays an important role in mediating the toxicity of many industrial chemicals, plays an important role in the physiology of female reproductive tract organs. This makes it likely that the AHR and additional components of the AHR signalling pathway are under the control of female sex steroids. In a previous study, we could already demonstrate the regulation of many members of the AHR battery by 17ß-estradiol (E2) in the uterus of rats. In this study, we addressed the potential role of progesterone (P4) in this context. In a comparative approach using ovariectomized rats which were treated for 3 days with either vehicle control, E2, progesterone (P4) or the combination of both hormones in addition to sham-operated animals, we could demonstrate that in addition to E2, P4 is also an important factor in regulating AHR signalling in the rat uterus. P4 has effects similar to E2 on uterine Ahr, Arnt and Arnt2 mRNA levels, resulting in a downregulation of these genes, while the E2-mediated downregulation of key AHR response genes Cyp1a1, Gsta2 and Ugt1 is completely antagonized by P4. As with E2, P4 leads to an increase in uterine AHR levels, especially in the endometrial epithelium despite the decrease in corresponding mRNA levels. This indicates a complex gene-specific regulatory network involving E2, P4 and possibly AHR itself to maintain all components of the AHR signalling cascade at the required levels during all stages of the oestrous cycle and pregnancy.


Asunto(s)
Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Progesterona/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Útero/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Femenino , Inmunohistoquímica , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Ratas Wistar , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Útero/metabolismo , Útero/patología
18.
Arch Toxicol ; 86(12): 1873-84, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22811023

RESUMEN

Anabolic-androgenic steroids are frequently misused compounds in sports, and they belong to the controlled substances according to the requirements of the World Anti-Doping Agency. The classical techniques of steroid detection are mass spectrometry coupled to gas or liquid chromatography. Biological methods that base on the ability of substances to bind the steroid receptor are not applied in routine doping control procedures so far, but they appear to be useful for characterization of steroid androgenic potential. In this study we used the yeast androgen receptor reporter system (YAS), which in the past has already successfully been applied to both various androgenic substances and also urine samples. Giving attention to the androgenic potential of steroidal dietary supplements, we exemplified the analysis using both mass spectrometry techniques and the YAS-based assay on the product "Syntrax Tetrabol" which was a confiscated dietary supplement and marketed as a steroid precursor. Identification, structure and the kinetic behavior of its excreted metabolites were analyzed by NMR, GC-MS and LC-MS/MS. The androgenic potential of the parent compound as well as its metabolites in urine was evaluated with the help of the YAS. The application of urine samples with a previous deconjugation and the inclusion of urine density values were carried out and led to increased responses on the YAS. Further, the possibility of a complementary application of structure-based instrumental analysis and biological detection of androgenicity with the help of the YAS seems to be desirable and is discussed.


Asunto(s)
Anabolizantes/farmacología , Andrógenos/farmacología , Dihidrotestosterona/metabolismo , Dihidrotestosterona/farmacología , Doping en los Deportes/métodos , Detección de Abuso de Sustancias/métodos , Activación Transcripcional/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Dihidrotestosterona/orina , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrólisis , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Saccharomyces cerevisiae/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
19.
Arch Toxicol ; 86(10): 1603-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22659940

RESUMEN

The aryl hydrocarbon receptor (AHR) is known to mediate the cellular response to numerous xenobiotics including dioxin. Surprisingly AHR knockout mice provide evidence for the involvement of the AHR signalling cascade in estrogen regulated physiological functions of the female reproductive system. Several studies already aimed to investigate the impact of the AHR mediated xenobiotic response pathway on estrogen receptor (ER) signalling, whereas on contrary availability of data describing the effect of 17ß-Estradiol (E2) on the AHR signalling cascade is rather limited. In this study we observed an inhibitory effect of E2 treatment on uterine Ahr, Arnt, Arnt2, Ahrr, Cyp1a1, Ugt1 and Nfe2l2 gene expression in ovariectomized Wistar rats, whereas Cyp1b1, Nqo1 and Gsta2 displayed an increased transcription. The usage of the ER selective agonists, 16α-LE(2) (ERα selective) and 8ß-VE(2) (ERß selective), enabled us to distinguish between ER subtype specific responses. On mRNA level the observed changes in gene expression were mainly mediated by ERα except for the expression of Nqo1. In most cases the activation of ERß caused effects opposite to the ones observed following activation of ERα. Despite the significant changes in AHR mRNA levels immunohistochemical staining uterine tissue section did not reveal changes of the AHR protein level. Taken together our results validate, support and extend the hypothesis of uterine crosstalk between AHR and ER signalling pathways. Furthermore they give an insight into how the AHR and its related genes may participate in E2 dependent uterine physiological processes and provide another potential mechanism of action for xenoestrogens.


Asunto(s)
Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptores de Hidrocarburo de Aril/genética , Útero/metabolismo , Animales , Estradiol/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ovariectomía , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Útero/efectos de los fármacos
20.
Arch Toxicol ; 85(4): 285-92, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20924560

RESUMEN

The routinely used analytical method for detecting the abuse of anabolic steroids only allows the detection of molecules with known analytical properties. In our supplementary approach to structure-independent detection, substances are identified by their biological activity. In the present study, urines excreted after oral methyltestosterone (MT) administration were analyzed by a yeast androgen screen (YAS). The aim was to trace the excretion of MT or its metabolites in human urine samples and to compare the results with those from the established analytical method. MT and its two major metabolites were tested as pure compounds in the YAS. In a second step, the ability of the YAS to detect MT and its metabolites in urine samples was analyzed. For this purpose, a human volunteer ingested of a single dose of 5 mg methyltestosterone. Urine samples were collected after different time intervals (0-307 h) and were analyzed in the YAS and in parallel by GC/MS. Whereas the YAS was able to trace MT in urine samples at least for 14 days, the detection limits of the GC/MS method allowed follow-up until day six. In conclusion, our results demonstrate that the yeast reporter gene system could detect the activity of anabolic steroids like methyltestosterone with high sensitivity even in urine. Furthermore, the YAS was able to detect MT abuse for a longer period of time than classical GC/MS. Obviously, the system responds to long-lasting metabolites yet unidentified. Therefore, the YAS can be a powerful (pre-) screening tool with the potential that to be used to identify persistent or late screening metabolites of anabolic steroids, which could be used for an enhancement of the sensitivity of GC/MS detection techniques.


Asunto(s)
Anabolizantes/farmacocinética , Metiltestosterona/farmacocinética , Saccharomyces cerevisiae/efectos de los fármacos , Detección de Abuso de Sustancias/métodos , Anabolizantes/orina , Bioensayo , Cromatografía de Gases y Espectrometría de Masas , Genes Reporteros , Humanos , Masculino , Metiltestosterona/análogos & derivados , Metiltestosterona/orina , Persona de Mediana Edad , Saccharomyces cerevisiae/fisiología , Detección de Abuso de Sustancias/estadística & datos numéricos , Espectrometría de Masas en Tándem , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...