Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 195: 114916, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277218

RESUMEN

This study assessed the impact of current home practices including reheating, standing, and stirring on mitigation of furan and its derivatives in vegetable-based infant meals. Three vegetable-based infant meals (vegetables alone, with fish, with meat) underwent different home practices including reheating, post-reheating standing (60, 120 and 240 s) and post-reheating stirring (30, 60, 120 and 240 s). Targeted quantification of furan, 2-methylfuran (2-MF) and 3-methylfuran (3-MF) and exploration of additional furan derivatives were undertaken in treated and untreated vegetable-based infant meals using SHS-GC-Q Exactive-Orbitrap-MS. For the three compounds, the quality of the measurements was first validated with suitable linearity, limits of quantification, precision and recoveries. A second step highlighted high concentrations of furan (78.5-103.9 µg/kg), 2-MF (4.8-10.1 µg/kg) and 3-MF (3.4-5.8 µg/kg) in the three vegetable-based infant meals before preparation and the assessment of the cumulative risk related to these three furan compounds confirmed the relevance of studying home mitigation strategies. The third step showed that post-reheating stirring was the most effective home practice for mitigation, with maximum observed reductions of 66.3, 59.9 and 57.7 % for furan, 2-MF and 3-MF, respectively. In a fourth step, a suspect screening approach carried out on SHS-GC-Q Exactive-Orbitrap MS data revealed the presence of 2-ethyl-, 2-ethyl-5-methyl-, 2-butyl- and 2-vinyl-furan in vegetable-based meals and showed a similar mitigation trend of home practices on the relative concentrations of these four additional furan derivatives. Finally, despite a significant mitigation reaching 69 % of the furan concentration, the combined effect of home practices on furan compounds was not sufficient to rule out the risk associated with the consumption of vegetable-based infant foods and additional options are discussed.


Asunto(s)
Culinaria , Furanos , Cromatografía de Gases y Espectrometría de Masas , Alimentos Infantiles , Verduras , Furanos/análisis , Verduras/química , Culinaria/métodos , Alimentos Infantiles/análisis , Humanos , Lactante , Contaminación de Alimentos/análisis
2.
Food Res Int ; 191: 114614, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059894

RESUMEN

The aim of the present study was to assess the performance and complementarity of methods capable of both quantifying furan, 2-Methylfuran (2-MF) and 3-Methylfuran (3-MF) in infant foods, but also to comprehensively explore other furan derivatives. It is more particularly a question of validating and comparing the couplings of the two headspace extraction methods most used for the analysis of furan compounds - Headspace Solid Phase Microextraction (HS-SPME) and Static HeadSpace (SHS) - with gas chromatography hyphenated to a high-resolution mass detector (Q Exactive-Orbitrap MS) which allows both targeted quantification and suspect screening. Firstly, the accuracy profile approach was implemented to assess, validate and compare HS-SPME- and SHS-GC-Q Exactive-Orbitrap MS for the quantification of furan in two model infant foods, apple puree and first infant formula. SHS-GC-Q Exactive-Orbitrap MS, showed better accuracy (uncertainty < 17.2 % vs 22.5 % for HS-SPME GC-Q Exactive-Orbitrap MS) and better sensitivity (LOQ < 2.8 vs LOQ < 4.0 µg/kg) over a broader validation range (2-100 µg/kg vs 5-100 µg/kg in apple puree). Secondly, SHS-GC-Q Exactive-Orbitrap MS was assessed and validated by accuracy profile for the quantification of 2-MF and 3-MF, with performance close to those for furan except for 3-MF in apple puree. Thirdly, SHS-GC-Q Exactive-Orbitrap MS was used to quantify the levels of these compounds in 20 commercial samples (n = 3) belonging to the four main categories of infant food (infant formulae, fruit purees, infant cereals, vegetable/fish baby meals). Furan was quantified in 75 % of the samples, with maximum levels in the vegetable/fish-based infant foods (up to 127 µg/kg) while 2-MF and 3-MF were quantified in 45 % and 15 % of products respectively, with maximum levels of 14.1 µg/kg in follow-on formula 3rd age and 9.2 µg/kg in apple puree. Finally, SHS- and HS-SPME-GC-Q Exactive-Orbitrap MS data of the 20 infant products were processed in suspect screening mode using Compound DiscovererTM software. Coupling with HS-SPME, it made it possible to identify 13 additional furan derivatives, i.e. 5 more than with SHS. The relevance and safety status of the compounds identified are discussed.


Asunto(s)
Furanos , Cromatografía de Gases y Espectrometría de Masas , Alimentos Infantiles , Microextracción en Fase Sólida , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Alimentos Infantiles/análisis , Microextracción en Fase Sólida/métodos , Humanos , Lactante , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados , Fórmulas Infantiles/química , Malus/química
3.
Metabolites ; 13(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36837804

RESUMEN

Among the various "omics" approaches that can be used in toxicology, volatolomics is in full development. A volatolomic study was carried out on soil bacteria to validate the proof of concept, and this approach was implemented in a new model organism: the honeybee Apis mellifera. Emerging bees raised in the laboratory in pain-type cages were used. Volatolomics analysis was performed on cuticles, fat bodies, and adhering tissues (abdomens without the digestive tract), after 14 and 21 days of chronic exposure to 0.5 and 1 µg/L of fipronil, corresponding to sublethal doses. The VOCs analysis was processed using an HS-SPME/GC-MS method. A total of 281 features were extracted and tentatively identified. No significant effect of fipronil on the volatolome could be observed after 14 days of chronic exposure. Mainly after 21 days of exposure, a volatolome deviation appeared. The study of this deviation highlighted 11 VOCs whose signal abundances evolved during the experiment. Interestingly, the volatolomics approach revealed a VOC (2,6-dimethylcyclohexanol) that could act on GABA receptor activity (the fipronil target) and VOCs associated with semiochemical activities (pheromones, repellent agents, and compounds related to the Nasonov gland) leading to a potential impact on bee behavior.

4.
J Hazard Mater ; 443(Pt B): 130383, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444070

RESUMEN

Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.


Asunto(s)
Microbioma Gastrointestinal , Polietileno , Humanos , Lactante , Polietileno/toxicidad , Microplásticos , Plásticos , Ecosistema
5.
J Hazard Mater ; 442: 130010, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182891

RESUMEN

Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.


Asunto(s)
Microplásticos , Compuestos Orgánicos Volátiles , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno/toxicidad , Bacterias , Ácidos Grasos Volátiles , Mucosa Intestinal , Mucinas , Indoles
6.
Molecules ; 27(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36234772

RESUMEN

Although antimicrobials are generally found in trace amounts in meat, the human health risk they bear cannot be ignored. With the ultimate aim of making a better assessment of consumer exposure, this study explored the effects of pan cooking on sulfonamides and tetracyclines in meat. Screening of these antimicrobials in cooked meat was first performed by the European Union Reference Laboratory on the basis of HPLC-MS/MS analyses. A proof of concept approach using radiolabeling was then carried out on the most cooking-sensitive antimicrobial-sulfamethoxazole-to assess if a thermal degradation could explain the observed cooking losses. Degradation products were detected thanks to separation by HPLC and monitoring by online radioactivity detection. HPLC-Orbitrap HRMS analyses completed by 1D and 2D NMR experiments allowed the structural characterization of these degradation compounds. This study revealed that cooking could induce significant antimicrobial losses of up to 45% for sulfamethoxazole. Six potential degradation products of 14C-sulfamethoxazole were detected in cooked meat, and a thermal degradation pattern was proposed. This study highlights the importance of considering the cooking step in chemical risk assessment procedures and its impact on the level of chemical contaminants in meat and on the formation of potentially toxic breakdown compounds.


Asunto(s)
Compuestos Heterocíclicos , Tetraciclinas , Antibacterianos , Culinaria/métodos , Compuestos Heterocíclicos/análisis , Humanos , Carne/análisis , Sulfametoxazol/análisis , Sulfanilamida , Sulfonamidas/análisis , Espectrometría de Masas en Tándem , Tetraciclinas/análisis
7.
Food Chem ; 374: 131504, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34852955

RESUMEN

Volatile organic compounds (VOC)-based metabolomics, or volatolomics, was investigated for revealing livestock exposure to chemical contamination. Three farm animals, namely laying hens, broilers, and pigs, were experimentally exposed to 5 or 50 ng α-HBCDD g-1 feed. Liver and egg yolk for hens were analysed by headspace-SPME-GC-MS to reveal candidate markers of the livestock exposure to α-HBCDD. For hens, 2-butanol was found as marker in egg. In liver, twelve VOCs were highlighted as markers, with three aromatic VOCs - styrene, o-xylene, α-methylstyrene - highlighted for the two α-HBCDD doses. For broilers, six markers were revealed, with interestingly, styrene and phenol which were also found as markers in hen liver. For pigs, ten markers were revealed and the seven tentatively identified markers were oxygenated and sulfur VOCs. The candidate markers tentatively identified were discussed in light of previous volatolomics data, in particular from a γ-HBCDD exposure of laying hens.


Asunto(s)
Hidrocarburos Bromados , Ganado , Animales , Pollos , Femenino , Azufre , Porcinos
8.
Food Chem ; 374: 131623, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34872793

RESUMEN

In a risk assessment perspective, this work aims to assess the bioaccessibility of PCBs in meat. A standardised in vitro static digestion protocol was set up and coupled with extraction, clean-up and GC × GC-ToF/MS multianalyte method to monitor the fate of PCBs in meat during digestion. Starting with spiked meat, PCB bioaccessibility in 11% fat medium-cooked meat varied in adults from 20.6% to 30.5% according to congeners. PCB bioaccessibility increased to 44.2-50.1% in 5% fat meat and decreased to 6.2-9.1% and to 14.6-19.4% in digestion conditions mimicking infants and elderly, respectively. Intense cooking also decreased PCB bioaccessibility to 18.0-26.7%. Bioaccessibility data obtained with spiked meat were validated with measurements carried out in incurred meat samples. Finally, mean uptake distributions are obtained from a modular Bayesian approach. These distributions feature a lower mode when the fat content is higher, the meat is well-done cooked, and the consumers are older.


Asunto(s)
Bifenilos Policlorados , Anciano , Teorema de Bayes , Transporte Biológico , Culinaria , Humanos , Carne/análisis , Bifenilos Policlorados/análisis
9.
Sci Rep ; 8(1): 11006, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030472

RESUMEN

Growing evidence indicates that the human gut microbiota interacts with xenobiotics, including persistent organic pollutants and foodborne chemicals. The toxicological relevance of the gut microbiota-pollutant interplay is of great concern since chemicals may disrupt gut microbiota functions, with a potential impairment of host homeostasis. Herein we report within batch fermentation systems the impact of food contaminants (polycyclic aromatic hydrocarbons, polychlorobiphenyls, brominated flame retardants, dioxins, pesticides and heterocyclic amines) on the human gut microbiota by metatranscriptome and volatolome i.e. "volatile organic compounds" analyses. Inflammatory host cell response caused by microbial metabolites following the pollutants-gut microbiota interaction, was evaluated on intestinal epithelial TC7 cells. Changes in the volatolome pattern analyzed via solid-phase microextraction coupled to gas chromatography-mass spectrometry mainly resulted in an imbalance in sulfur, phenolic and ester compounds. An increase in microbial gene expression related to lipid metabolism processes as well as the plasma membrane, periplasmic space, protein kinase activity and receptor activity was observed following dioxin, brominated flame retardant and heterocyclic amine exposure. Conversely, all food contaminants tested induced a decreased in microbial transcript levels related to ribosome, translation and nucleic acid binding. Finally, we demonstrated that gut microbiota metabolites resulting from pollutant disturbances may promote the establishment of a pro-inflammatory state in the gut, as stated with the release of cytokine IL-8 by intestinal epithelial cells.


Asunto(s)
Contaminación de Alimentos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Intestinos/fisiología , Xenobióticos/farmacología , Línea Celular , Contaminantes Ambientales/efectos adversos , Células Epiteliales/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/microbiología , Transcriptoma/efectos de los fármacos
10.
Talanta ; 178: 854-863, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136906

RESUMEN

The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the "orthogonalized", "orthogonalized and Pareto-scaled", and "orthogonalized and autoscaled" data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not highlight the most influencing variables for each separation, whereas the ICA Loadings highlighted the same variables as did CCA. This study shows the potential of CCA for the extraction of pertinent information from a data matrix, using a procedure based on an original optimisation criterion, to produce results that are complementary, and in some cases may be superior, to those of PCA and ICA.

11.
Front Microbiol ; 9: 3113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671028

RESUMEN

Volatile organic compounds (VOC) produced by microorganisms in response to chemical stressor showed recently increasing attention, because of possible environmental applications. In this work, we aimed to bring the first proof of concept that volatolomic (i.e., VOCs analysis) can be used to determine candidate VOC markers of two soil bacteria strains (Pseudomonas fluorescens SG-1 and Bacillus megaterium Mes11) exposure to pesticides. VOC determination was based on solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Accordingly, we highlighted a set of bacterial VOCs modulated in each strains according to the nature of the pesticide used. Three out these VOCs were specifically modulated in P. fluorescens SG-1 when exposed with two pyrethroid pesticides (deltamethrine and cypermethrine): 2-hexanone; 1,3-ditertbutylbenzene and malonic acid, hexyl 3-methylbutyl ester. Our results thus suggest the possible existence of generic VOC markers of pyrethroids in this strain. Of particular interest, two out of these three VOCs, the 1,3-ditertbutylbenzene and the malonic acid, hexyl 3-methylbutyl ester were found also in B. megaterium Mes11 when exposed with cypermethrine. This result highlighted the possible existence of interspecific VOC markers of pyrethroid in these two bacteria. Altogether, our work underlined the relevance of volatolomic to detect signatures of pesticides exposure in microorganisms and more generally to microbial ecotoxicology. Based on these first results, considerations of volatolomics for the chemical risk assessment in environment such as soils can be indirectly explored in longer terms.

12.
Chemosphere ; 189: 634-642, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965058

RESUMEN

Hexabromocyclododecane (HBCD) is a critical emerging brominated flame retardant to which consumers can be exposed at high doses through a single food intake. Based on an animal experiment involving 3 groups of laying hens fed during 70 days with a control diet or γ-HBCD-contaminated diets at 0.1 or 10 µg γ-HBCD g-1 feed, this study aims to use the volatolome of biological samples for revealing markers of livestock exposure to HBCD. Liquid chromatography-tandem mass spectrometry was used to monitor the time-course of HBCD levels in bodily samples. Each liver was analyzed by solid-phase microextraction-gas chromatography-mass spectrometry for volatolome profiling. After 70 days, γ-HBCD concentrations in egg yolk, fat, liver and serum reached 54 ± 4, 85 ± 6, 31 ± 6, and 32 ± 4 ng g-1 lw, respectively, for the low exposure level and 4.6+/5.7, 7.8+/6.5, 3.9+/3.0 and 3.9+/6.1 µg g-1 lw, respectively, for the high exposure level. Isomerization of γ-HBCD into α- and ß-HBCD was observed in all tissues, at least for the high exposure level. Volatolome data allowed a significant discrimination between control and exposed animals whatever the feed contamination load, demonstrating a liver metabolic response to γ-HBCD exposure. The relevance of the twenty nine volatile exposure markers tentatively identified was discussed in light of literature data.


Asunto(s)
Contaminantes Ambientales/toxicidad , Hidrocarburos Bromados/toxicidad , Hígado/metabolismo , Aves de Corral/metabolismo , Animales , Pollos/metabolismo , Cromatografía Liquida , Dieta , Yema de Huevo/química , Contaminantes Ambientales/metabolismo , Femenino , Retardadores de Llama/análisis , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Bromados/metabolismo
13.
Front Microbiol ; 8: 1562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861070

RESUMEN

Benzo[a]pyrene (B[a]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[a]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[a]P on two distinct human fecal microbiota. B[a]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[a]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[a]P induces a specific deviation in the microbial metabolism.

14.
Food Chem ; 232: 395-404, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490090

RESUMEN

This work presents the effects of pan cooking on PCBs, PCDD/Fs, pesticides and trace elements in meat from a risk assessment perspective. Three different realistic cooking intensities were studied. A GC×GC-TOF/MS method was set up for the multiresidue analysis of 189 PCBs, 17 PCDD/Fs and 16 pesticides whereas Cd, As, Pb and Hg were assayed by ICP-MS. In terms of quantity, average PCB losses after cooking were 18±5% for rare, 30±3% for medium, and 48±2% for well-done meat. In contrast, average PCDD/F losses were not significant. For pesticides, no loss occurred for aldrin, lindane, DDE or DDD, whereas losses exceeding 80% were found for dieldrin, sulfotep or phorate. Losses close to the margin of error were observed for trace elements. These results are discussed in light of the physicochemical properties of the micropollutants as well as of water and fat losses into cooking juice.


Asunto(s)
Culinaria , Manipulación de Alimentos , Carne , Calor , Bifenilos Policlorados
15.
J Chromatogr A ; 1497: 9-18, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28366563

RESUMEN

Starting from a critical analysis of a first "proof of concept" study on the utility of the liver volatolome for detecting livestock exposure to environmental micropollutants (Berge et al., 2011), the primary aim of this paper is to improve extraction conditions so as to obtain more representative extracts by using an extraction temperature closer to livestock physiological conditions while minimizing analytical variability and maximizing Volatile Organic Compound (VOC) abundancies. Levers related to extraction conditions and sample preparation were assessed in the light of both abundance and coefficient of variation of 22 candidate VOC markers identified in earlier volatolomic studies. Starting with a CAR/PDMS fiber and a 30min extraction, the reduction of SPME temperature to 40°C resulted in a significant decrease in the area of 14 candidate VOC markers (p<0.05), mainly carbonyls and alcohols but also a reduction in the coefficient of variation for 17 of them. In order to restore VOC abundances and to minimize variability, two approaches dealing with sample preparation were investigated. By increasing sample defrosting time at 4°C from 0 to 24h yielded higher abundances and lower variabilities for 15 and 13 compounds, respectively. Lastly, by using additives favouring the release of VOCs (1.2g of NaCl) the sensitivity of the analysis was improved with a significant increase in VOC abundances of more than 50% for 13 out of the 22 candidate markers. The modified SPME parameters significantly enhanced the abundances while decreasing the analytical variability for most candidate VOC markers. The second step was to validate the ability of the revised SPME protocol to discriminate intentionally contaminated broiler chickens from controls, under case/control animal testing conditions. After verification of the contamination levels of the animals by national reference laboratories, data analysis by a multivariate chemometric method (Common Components and Specific Weights Analysis - ComDim) showed that the liver volatolome could reveal dietary exposure of broilers to a group of environmental pollutants (PCBs), a veterinary treatment (monensin), and a pesticide (deltamethrin), thus confirming the usefulness of this analytical set-up.


Asunto(s)
Contaminantes Ambientales/análisis , Hígado/química , Ganado/metabolismo , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Alcoholes/análisis , Animales , Pollos/metabolismo , Monensina/análisis , Nitrilos/análisis , Plaguicidas/análisis , Piretrinas/análisis , Temperatura
16.
J Chromatogr A ; 1388: 217-26, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25728653

RESUMEN

The assessment of the dual impact of heating treatments on food safety and aroma is a major issue for the food sector. The aim of the present study was to demonstrate the relevance of multidimensional GC techniques, olfactometry and mass spectrometry for the parallel determination of process-induced toxicants and odorants in food starting with cooked meat as a food model. PAHs were analyzed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry after extraction by accelerated solvent extraction (ASE-GC × GC-TOF/MS). Odour-active compounds were determined by dynamic headspace-GC hyphenated with eight booth olfactometry and mass spectrometry (DH-GC-MS/8O) and DH-heart-cutting multidimensional GC hyphenated with olfactometry and mass spectrometry (DH-GC-GC-MS/O). For PAH determination, the GC × GC conditions consisted of a combination of a primary non-polar BPX-5 column and a secondary polar BPX-50 column, and a modulation period of 5s. In terms of linearity (R(2) ranging from 0.985 to 0.997), recovery rate (84-111%) and limit of detection (5-65 ng/kg of cooked meat), the ASE-GC × GC-TOF/MS method was found consistent with the multiresidue determination of 16 PAHs including benzo[a]pyrene in cooked meat. For aroma compounds, DH-GC-MS/8O and DH-GC-MS/O revealed 53 major meat odour-active compounds. A customized heart-cutting GC-GC-MS/O enabled the coeluting odour zones with high odour-activity to be resolved and revealed 15 additional odour-active compounds. Finally, these developments of multidimensional approaches were used to investigate the balance between 16 PAHs and 68 odour-active compounds generated with different cooking techniques.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Carne/análisis , Odorantes/análisis , Olfatometría/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Olfato , Calor
17.
J Chromatogr A ; 1392: 74-81, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25814331

RESUMEN

This paper evaluates different multiresidue methods based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF/MS) to analyze dioxin-related micropollutants in complex food matrices. In a first step, the column sets Rtx-PCB/BPX-50 and Rtx-Dioxin2/BPX-50 were compared in terms of peak shape (width and symmetry) and resolution for the separation of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in solvent. A satisfactory separation of 206 dioxin-related micropollutants including the 17 toxic PCDD/Fs was achieved in 75 min with the column set Rtx-Dioxin2/BPX-50. In a second time, the GC×GC-TOF/MS method was spread to the analysis of dioxin-related micropollutants in complex food matrices. An extraction procedure including accelerated solvent extraction (ASE), centrifugal evaporation and gel permeation chromatography (GPC) was optimized. Starting with meat as a model matrix, a micropollutant spiking method was then set up by comparing seven methods in terms of recoveries and reproducibility. The method combining immersion of the meat in a large volume of solvent containing micropollutants followed by homogenization by blender induced recoveries in the acceptable range of 70-130% and satisfactory standard deviations (≤10%) for most of the compounds studied. Limits of detection of the GC×GC-TOF/MS method ranged between 50 and 100 pg/g of spiked fresh meat for PCBs and between 65 and 227 pg/g for PCDD/Fs. Potential applications of this method are discussed.


Asunto(s)
Benzofuranos/análisis , Contaminantes Ambientales/análisis , Análisis de los Alimentos , Cromatografía de Gases y Espectrometría de Masas/métodos , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análogos & derivados , Animales , Bovinos , Cromatografía en Gel , Dibenzofuranos Policlorados , Carne/análisis , Dibenzodioxinas Policloradas/análisis , Reproducibilidad de los Resultados
18.
J Chromatogr A ; 1311: 140-8, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24011509

RESUMEN

The present study discusses the relevance, performance and complementarities of flame photometric detector in phosphorus (FPD/P) and sulfur (FPD/S) modes, micro electron capture detector (µECD), nitrogen phosphorus detector (NPD), flame ionization detector (FID) and time-of-flight mass spectrometer (TOF/MS) for the comprehensive two-dimensional gas chromatography (GC×GC) analysis of pesticides. A mix of 41 pesticides including organophosphorus pesticides, synthetic pyrethroids and fungicides was investigated in order to benchmark GC×GC systems in terms of linearity (R(2)), limits of detection (LOD), and peak shape measures (widths and asymmetries). A mixture of pesticides which contained the heteroatoms phosphorus, sulfur, nitrogen and one or several halogens, was used to acquire a comparative data set to monitor relative detector performances. GC×GC datasets were systematically compared to their GC counterpart acquired with an optimized one-dimensional GC configuration. Compared with FID, considered the most appropriate detector in terms of suitability for GC×GC, the element-selective detector FPD/P and µECD best met the peak widths (0.13-0.27s for FPD/P; 0.22-0.26s for µECD) and tailing factors (0.99-1.66 for FPD/P; 1.32-1.52 for µECD); NPD exhibited similar peak widths (0.23-0.30s), but exceeded those of the above detectors for tailing factors (1.97-2.13). These three detectors had improved detection limits of 3-7 times and 4-20 times lower LODs in GC×GC mode compared with FID and TOF-MS, respectively. In contrast FPD/S had poor peak shape (tailing factor 3.36-5.12) and much lower sensitivity (10-20 fold lower compared to FPD/P). In general, element-selective detectors with favorable detection metrics can be considered viable alternatives for pesticide determination using GC×GC in complex matrices. The controversial issue of sensitivity enhancement in GC×GC was considered for optimized GC and GC×GC operation. For all detectors, we found no significant LOD enhancement in GC×GC.


Asunto(s)
Cromatografía de Gases/métodos , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Ionización de Llama/métodos , Límite de Detección
19.
Anal Chim Acta ; 733: 16-22, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22704370

RESUMEN

The present paper introduces a new gas chromatography data processing procedure dubbed systematic ratio normalization (SRN) enabling to improve both sample set discrimination and biomarker identification. SRN consists in (1) calculating, for each sample, all the log-ratios between abundances of chromatography-analyzed compounds, then (2) selecting the log-ratio(s) that best maximize the discrimination between sample-sets. The relevance of SRN was evaluated on two data sets acquired through gas chromatography-mass spectrometry as part of separate studies designed (i) to discriminate source-origins between vegetable oils analyzed via an analytical system exposed to instrument drift (data set 1) and (ii) to discriminate animal feed between meat samples aged for different durations (data set 2). Applying SRN to raw data made it possible to obtain robust discrimination models for the two data sets by enhancing the contribution to the data variance of the factor-of-interest while stabilizing the contribution of the disturbance factor. The most discriminant log-ratios were shown to employ the most relevant biomarkers presenting relative independence of the factor-of-interest as well as co-behavior of the disturbance effects potentially biasing the discrimination, such as instrument drift or sample biochemical changes. SRN can be run a posteriori on any data set, and might be generalizable to most of separating methods.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Carne/análisis , Aceites de Plantas/química , Verduras/química , Compuestos Orgánicos Volátiles/análisis , Algoritmos , Animales , Análisis Discriminante , Análisis Multivariante , Análisis de Componente Principal , Ovinos
20.
Environ Sci Pollut Res Int ; 19(2): 440-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21808974

RESUMEN

INTRODUCTION: High concentrations of hexabromocyclododecane (HBCD) sometimes recorded in free-range hens' eggs are thought to be due to soil ingestion. Of the three stereoisomers of HBCD (α-, ß-, and γ-HBCD), γ-HBCD is the main component in the commercial mixture, as well as in environmental matrices, whereas the isomer profile is α-dominated in biota. In fish and in mammals, this shift is thought to be due to a rapid elimination of γ-HBCD and to its bioisomerization to the more persistent α-HBCD. The aim of the current controlled study was to better understand the fate of ingested HBCD in laying hens. The isomer profile in soil being γ-dominated, excretion kinetics of γ-HBCD into egg yolk, and accumulation in liver and in abdominal fat were investigated. MATERIALS AND METHODS: Forty-eight laying hens were individually housed and fed with a spiked diet containing 1.1-ng γ-HBCD per gram for 21 days and with a clean diet for the following 18 days. Hens were sequentially slaughtered throughout the 39-day experiment. α-, ß-, and γ-HBCD were analyzed in egg yolk, in abdominal fat, and in liver by LC-MS/MS. α- and γ-HBCD were quantified in the three tissues, while ß-HBCD was never quantified. RESULTS AND CONCLUSION: Kinetics of the two isomers suggests that γ-HBCD is rapidly biotransformed and eliminated, and partly isomerized into the more persistent α-HBCD. Carry-over rate of ingested γ-HBCD to egg yolk was estimated at 1.2%. Estimated half-lives of γ-HBCD in egg yolk, in abdominal fat, and in liver were 2.9, 13, and 0.41 days, respectively.


Asunto(s)
Grasa Abdominal/química , Pollos , Yema de Huevo/química , Hidrocarburos Bromados/farmacocinética , Hígado/química , Grasa Abdominal/metabolismo , Animales , Biotransformación , Cromatografía Liquida , Dieta , Femenino , Retardadores de Llama , Cinética , Hígado/metabolismo , Estereoisomerismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA