RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic has resulted in global shortages in supplies for diagnostic tests, especially in the developing world. Risk factors for COVID-19 severity include pre-existing comorbidities, older age and male sex, but other variables are likely play a role in disease outcome. There is indeed increasing evidence that supports the role of host genetics in the predisposition to COVID-19 outcomes. The identification of genetic factors associated with the course of SARS-CoV-2 infections relies on DNA extraction methods. This study compared three DNA extraction methods (Chelex®100 resin, phenol-chloroform and the QIAamp DNA extraction kit) for COVID-19 host genetic studies using nasopharyngeal samples from patients. The methods were compared regarding number of required steps for execution, sample handling time, quality and quantity of the extracted material and application in genetic studies. The Chelex®100 method was found to be cheapest (33 and 13 times cheaper than the commercial kit and phenol-chloroform, respectively), give the highest DNA yield (306 and 69 times higher than the commercial kit and phenol-chloroform, respectively), with the least handling steps while providing adequate DNA quality for downstream applications. Together, our results show that the Chelex®100 resin is an inexpensive, safe, simple, fast, and suitable method for DNA extraction of nasopharyngeal samples from COVID-19 patients for genetics studies. This is particularly relevant in developing countries where cost and handling are critical steps in material processing.
Asunto(s)
COVID-19 , Cloroformo , Humanos , Masculino , COVID-19/epidemiología , COVID-19/genética , SARS-CoV-2/genética , ADN , Fenol , FenolesRESUMEN
Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 µM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 µM. Compounds 7, 8 and 11 showed IC50 values < 5 µM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.
Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Naftoquinonas , Chlorocebus aethiops , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Naftoquinonas/química , Células Vero , Triazoles/farmacología , Triazoles/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Plasmodium berghei , MamíferosRESUMEN
Junin virus consists of ribonucleic acid as the genome and is responsible for a rapidly changing tendency of the virus. The virus is accountable for ailments in the human body and causes Argentine Haemorrhagic Fever (AHF). The infection is may be transmitted through contact between an infected animal/host and a person, and later between person to person. Prevention of outbreaks of AHF in humans can be a tough practice, as their occurrence is infrequent and unpredictable. In this review, recent information from the past 5 years available on the Junin virus including the risk of its emergence, infectious agents, its pathogenesis in humans, available diagnostic and therapeutic approaches, and disease management has been summarised. Altogether, this article would be highly significant in understanding the mechanistic basis behind virus interaction and other processes during the life cycle. Currently, no specific therapeutic options are available to treat the Junin virus infection. The information covered in this review could be important for finding possible treatment options for Junin virus infections.
Asunto(s)
Fiebre Hemorrágica Americana , Virus Junin , Animales , Humanos , Virus Junin/genética , Fiebre Hemorrágica Americana/diagnóstico , Fiebre Hemorrágica Americana/patologíaRESUMEN
Zika virus (ZIKV) is a mosquito-borne virus belonging to the Flaviviridae family and is responsible for an exanthematous disease and severe neurological manifestations, such as microcephaly and Guillain-Barré syndrome. ZIKV has a single strand positive-sense RNA genome that is translated into structural and non-structural (NS) proteins. Although it has become endemic in most parts of the tropical world, Zika still does not have a specific treatment. Thus, in this work we evaluate the cytotoxicity and antiviral activities of 14 hybrid compounds formed by 1H-1,2,3-triazole, naphthoquinone and phthalimide groups. Most compounds showed low cytotoxicity to epithelial cells, specially the 3b compound. After screening with all compounds, 4b was the most active against ZIKV in the post-infection test, obtaining a 50% inhibition concentration (IC50) of 146.0 µM and SI of 2.3. There were no significant results for the pre-treatment test. According to the molecular docking compound, 4b was suggested with significant binding affinity for the NS5 RdRp protein target, which was further corroborated by molecular dynamic simulation studies.
Asunto(s)
Antivirales/farmacología , Triazoles/farmacología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Triazoles/química , Células Vero , Infección por el Virus Zika/virologíaRESUMEN
A total of forty-three compounds were synthesized, including thirty-two new ones. Among those compounds, seventeen were selected and tested on human tumor cell lines: PC-3 (prostate adenocarcinoma), HCT-116 (colorectal tumor), NCIH-460 (lung carcinoma), SKMEL-103 (melanoma) and AGP-01 (gastric tumor). Alkynylated 1,2,4-oxadiazoles 2m, 3g and 3k exhibited antiproliferative activities against NCIH-460 in culture. Alkynylated N-cyclohexyl-1,2,4-oxadiazoles 3a-m and bis-heterocycle glucoglycero-1,2,3-triazole-N-cyclohexyl-1,2,4-oxadiazole derivatives 5a-k and 6-11 were evaluated for their in vitro efficacy towards Mycobacterium tuberculosis (Mtb) H37Ra and H37Rv strains. In general, glycerosugars conjugated to 1,2,4-oxadiazole via a 1,2,3-triazole linkage (5a, 5e, 5j, 5k, and 7) showed in vitro inhibitory activity against Mtb (H37Rv). The largest molecules bis-triazoles 10 and 11, proved inactive against TB. Probably, the absence of the N-cyclohexyl group in compound 8 and 1,2,4-oxadiazole nucleus in compound 9 were responsible for its low activity. Glucoglycero-triazole-oxadiazole derivatives 5e (10 µM) and 7 (23.9 µM) were the most promising antitubercular compounds, showing a better selective index than when tested against RAW 264.7 and HepG2 cells. Vero cell were used to investigate cytotoxicity of compounds 5a, 5h, 5j, 5k, and these compounds showed good cell viability. Further, in silico studies were performed for most active compounds (5e and 7) with potential drug targets, DprE1 and InhA of Mtb to understand possible interactions aided with molecular dynamic simulation (100ns).