Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(34): 7198-7204, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37594308

RESUMEN

Excimeric systems (i.e., excited dimers) have well served as model compounds for the study of the delocalization of electronic energy over weakly interacting chromophores. However, there remain relatively few isolated systems in which such interactions can be studied experimentally at a level to afford detailed comparisons with theory. In this Article, we examine a series of covalently and noncovalently linked dimers of fluorene, as a model aromatic chromophore, where the formation of excimers requires a π-stacked, cofacial orientation at van der Waals contact. Building upon a series of seminal prior studies that examined vibronic quenching of the excitation interaction in van der Waals dimers, the key question that we sought to address here is whether a single quenching factor could reproduce experimental excitonic splittings across a series of covalently and noncovalently linked bichromophoric systems built from the same chromophore. In comparing experimentally measured excitonic splittings with calculated static splittings using time-dependent density functional methods, we find that all systems save one fall on a line with a slope of 0.080(8), reflecting a vibrational quenching of roughly 1 order of magnitude. The outlier, which shows a significantly reduced quenching factor, represents a cyclophane-linked system where the fluorene moieties are constrained in a cofacial arrangement. We argue that this system evidences the transition from the weak to intermediate coupling regime.

2.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175127

RESUMEN

A study of cofacially arrayed π-systems is of particular importance for the design of functional materials for efficient long-range intra-chain charge transfer through the bulk semiconducting materials in the layers of photovoltaic devices. The effect of π-stacking between a pair of aromatic rings has been mainly studied in the form of cyclophanes, where aromatic rings are forced into a sandwich-like geometry, which extensively deforms the aromatic rings from planarity. The synthetic difficulties associated with the preparation of cyclophane-like structures has prevented the synthesis of many examples of their multi-layered analogues. Moreover, the few available multi-layered cyclophanes are not readily amenable to the structural modification required for the construction of D-spacer-A triads needed to explore mechanisms of electron and energy transfer. In this review, we recount how a detailed experimental and computational analysis of 1,3-diarylalkanes led to the design of a new class of cofacially arrayed polyfluorenes that retain their π-stacked structure. Thus, efficient synthetic strategies have been established for the ready preparation of monodisperse polyfluorenes with up to six π-stacked fluorenes, which afford ready access to D-spacer-A triads by linking donor and acceptor groups to the polyfluorene spacers via single methylenes. Detailed 1H NMR spectroscopy, X-ray crystallography, electrochemistry, and He(I) photoelectron spectroscopy of F2-F6 have confirmed the rigid cofacial stacking of multiple fluorenes in F2-F6, despite the presence of rotatable C-C bonds. These polyfluorenes (F2-F6) form stable cation radicals in which a single hole is delocalized amongst the stacked fluorenes, as judged by the presence of intense charge-resonance transition in their optical spectra. Interestingly, these studies also discern that delocalization of a single cationic charge could occur over multiple fluorene rings in F2-F6, while the exciton is likely localized only onto two fluorenes in F2-F6. Facile synthesis of the D-spacer-A triads allowed us to demonstrate that efficient triplet energy transfer can occur through π-stacked polyfluorenes; the mechanism of energy transfer crosses over from tunneling to hopping with increasing number of fluorenes in the polyfluorene spacer. We suggest that the development of rigidly held π-stacked polyfluorenes, described herein, with well-defined redox and optoelectronic properties provides an ideal scaffold for the study of electron and energy transfer in D-spacer-A triads, where the Fn spacers serve as models for cofacially stacked π-systems.

3.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144725

RESUMEN

We have designed and synthesized electron-rich calixarene derivatives, which undergo reversible electrochemical oxidation in a well-accessible potential range that allows the ready preparation and isolation of the corresponding cation radicals. Preparation of mono- or tetra-radical cation can be achieved by using stable aromatic cation-radical salts such as MA+•, MB+•, and NAP+• as selective organic oxidants. The cation radicals of calixarenes are stable indefinitely at ambient temperatures and can be readily characterized by UV-vis-NIR spectroscopy. These cation radicals bind a single molecule of nitric oxide within its cavity with remarkable efficiency.

4.
Org Lett ; 23(13): 5170-5174, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34126005

RESUMEN

We employed the density functionaly theory (DFT)-predicted regioselectivity of the intramolecular Scholl reaction in phenanthrene and dibenzo[g,p]chrysene frameworks to obtain π-extended mono and double [7]helicenes, respectively. The formation of these helical structures occurs despite the buildup of a large strain energy up to 30 kcal/mol compared with their most stable isomers. The twisted and strained structures were characterized and analyzed by experimental (NMR, UV-vis, emission, electrochemistry, and single-crystal X-ray diffraction) techniques and were further supported by DFT calculations.

5.
Chemistry ; 26(62): 14085-14089, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32608146

RESUMEN

The design and synthesis of a new molecular tweezer (T-tmp) with electron-rich pincers are reported. The stable monocationic radicals and self-assembled dimeric radicals of this molecular tweezer platform were prepared by chemical oxidative titration. With the aid of DFT calculations, it was found that the dimeric radicals with syn-syn-syn conformer has the most stable structure, with the hole primarily delocalized between parallel stacked pyrenyl groups.

6.
Org Chem Front ; 7(20): 3215-3222, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33796320

RESUMEN

Herein, we report the synthesis of two new series of angular (all-syn) ladder-type meta-[n]phenylenes (LMP, n = 3-8). One series contains keto groups at the termini bridges, denoted angular keto (AKn), the second contains alkyl groups at all bridge sp3 carbons, denoted angular alkyl (AAn). Their electronic and structural properties were delineated by a combination of electrochemistry and spectroscopic (UV-Vis and emission) methods and further supported by DFT calculations. Interestingly, experimental and DFT data show that changing the bridging group at the termini from alkyl (AAn) to keto (AKn) gives an increase in the first reduction potentials and LUMO energies, as the π-system is extended. Also, the charge (de)localization behavior is different for these two species; while the AAn compounds stablize charge with Robin-Day class III, the AKn compounds show a clear switch from class III to class II. In comparison with the linear analogues (LKn and LAn), DFT results reveal a shape independency of the charge (de)localization mechanism in acceptor-π-acceptor series (AKn/LKn).

7.
J Photochem Photobiol A Chem ; 375: 114-131, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31839699

RESUMEN

Dual specific phosphatases (DUSPs) are an important class of mitogen-activated protein kinase (MAPK) regulators, and are drug targets for treating vascular diseases. Previously we had shown that DUSP5 plays a role in embryonic vertebrate vascular patterning. Herein, we screened a library of FDA-approved drugs and related compounds, using a para-nitrophenylphosphate substrate (pNPP)-based assay. This assay identified merbromin (also known as mercurochrome) as targeting DUSP5; and, we subsequently identified xanthene-ring based merbromin analogs eosin Y, erythrosin B, and rose bengal, all of which inhibit DUSP5 in vitro. Inhibition was time-dependent for merbromin, eosin Y, 2',7'-dibromofluorescein, and 2',7'-dichlorofluorescein, with enzyme inhibition increasing over time. Reaction progress curve data fit best to a slow-binding model of irreversible enzyme inactivation. Potency of the time-dependent compounds, except for 2',7'-dichlorofluorescein, was diminished when dithiothreitol (DTT) was present, suggesting thiol reactivity. Two additional merbromin analogs, erythrosin B and rose bengal also inhibit DUSP5, but have the therapeutic advantage of being less sensitive to DTT and exhibiting little time dependence for inhibition. Inhibition potency is correlated with the xanthene dye's LUMO energy, which affects ability to form light-activated radical anions, a likely active inhibitor form. Consistent with this hypothesis, rose bengal inhibition is light-dependent and demonstrates the expected red shifted spectrum upon binding to DUSP5, with a Kd of 690 nM. These studies provide a mechanistic foundation for further development of xanthene dyes for treating vascular diseases that respond to DUSP5 inhibition, with the following relative potencies: rose bengal > merbromin > erythrosin B > eosin Y.

8.
Org Lett ; 21(19): 7987-7991, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31553195

RESUMEN

We report a practical two-step approach for the synthesis of hybrid-bridge macrocyclic molecules that has been used to synthesize two novel oxy-alternate-bridged macrocyclic molecules, oxy-alternate cyclotetraveratrylene (O-altCTTV) and oxy-alternate cyclohexaveratrylene (O-altCHV). Electrochemistry, absorption spectroscopy, X-ray crystallography, and DFT calculations demonstrate that O-altCTTV acts as a redox-induced molecular actuator, as its switches from the open conformation in the neutral state to the closed conformation in the cation-radical state.

9.
J Chem Inf Model ; 59(4): 1563-1574, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30835471

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK) pathway is functionally generic and critical in maintaining physiological homeostasis and normal tissue development. This pathway is under tight regulation, which is in part mediated by dual-specific phosphatases (DUSPs), which dephosphorylate serine, threonine, and tyrosine residues of the ERK family of proteins. DUSP5 is of high clinical interest because of mutations we identified in this protein in patients with vascular anomalies. Unlike other DUSPs, DUSP5 has unique specificity toward substrate pERK1/2. Using molecular docking and simulation strategies, we previously showed that DUSP5 has two pockets, which are utilized in a specific fashion to facilitate specificity toward catalysis of its substrate pERK1/2. Remarkably, most DUSPs share high similarity in their catalytic sites. Studying the catalytic domain of DUSP5 and identifying amino acid residues that are important for dephosphorylating pERK1/2 could be critical in developing small molecules for therapies targeting DUSP5. RESULTS: In this study, we utilized computational modeling to identify and predict the importance of two conserved amino acid residues, H262 and S270, in the DUSP5 catalytic site. Modeling studies predicted that catalytic activity of DUSP5 would be altered if these critical conserved residues were mutated. We next generated independent Glutathione-S-Transferase (GST)-tagged full-length DUSP5 mutant proteins carrying specific mutations H262F and S270A in the phosphatase domain. Biochemical analysis was performed on these purified proteins, and consistent with our computational prediction, we observed altered enzyme activity kinetic profiles for both mutants with a synthetic small molecule substrate (pNPP) and the physiological relevant substrate (pERK) when compared to wild type GST-DUSP5 protein. CONCLUSION: Our molecular modeling and biochemical studies combined demonstrate that enzymatic activity of phosphatases can be manipulated by mutating specific conserved amino acid residues in the catalytic site (phosphatase domain). This strategy could facilitate generation of small molecules that will serve as agonists/antagonists of DUSP5 activity.


Asunto(s)
Secuencia Conservada , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Histidina , Serina , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos
10.
Chem Asian J ; 14(4): 542-546, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30549456

RESUMEN

Calix[4]arene-based molecules hold great promise as candidate sensors and storage materials for nitric oxide (NO), owing to their unprecedented binding affinity for NO. However, the structure of calix[4]arene is complicated by the availability of four possible conformers: 1,3-alternate, 1,2-alternate, cone, and partial cone (paco). Whilst complexes of NO with several of these conformers have previously been established, the 1,2-alternate conformer complex, that is, [1,2-alter⋅NO]+ , has not been previously reported. Herein, we determine the crystal structure of the NO complex with the 1,2-alternate conformer for the first time. In addition, we have also found that the 1,2-alternate and 1,3-alternate conformers can combine with two NO molecules to form stable bis(nitric oxide) complexes. These new complexes, which exhibit remarkable binding capacity for the construction of NO-storage molecules, were characterized by using X-ray crystallography and NMR, IR, and UV/Vis spectroscopy. These findings will extend our understanding of the interactions between nitric oxide and cofacially and non-cofacially arrayed aromatic rings, and we expect them to aid in the design and development of new supramolecular sensors and storage materials for NO with high capacity and efficacy.

11.
Cell Rep ; 25(9): 2605-2616.e7, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485823

RESUMEN

The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Células Endoteliales/metabolismo , Estabilidad de Enzimas , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Serina/metabolismo , Ovinos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
12.
Phys Chem Chem Phys ; 20(40): 25615-25622, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30283939

RESUMEN

Ionization-induced structural and conformational reorganization in various π-stacked dimers and covalently linked bichromophores is relevant to many processes in biological systems and functional materials. In this work, we examine the role of structural, conformational, and solvent reorganization in a set of conformationally mobile bichromophoric donors, using a combination of gas-phase photoelectron spectroscopy, solution-phase electrochemistry, and density functional theory (DFT) calculations. Photoelectron spectral analysis yields both adiabatic and vertical ionization energies (AIE/VIE), which are compared with measured (adiabatic) solution-phase oxidation potentials (Eox). Importantly, we find a strong correlation of Eox with AIE, but not VIE, reflecting variations in the attendant structural/conformational reorganization upon ionization. A careful comparison of the experimental data with the DFT calculations allowed us to probe the extent of charge stabilization in the gas phase and solution and to parse the reorganizational energy into its various components. This study highlights the importance of a synergistic approach of experiment and theory to study ionization-induced structural and conformational reorganization.

13.
Org Lett ; 20(20): 6583-6586, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30303388

RESUMEN

An efficient and highly selective synthetic method toward the preparation of pillar[ n]arenes ( n = 5, 6) is reported, based upon a high solvent-dependent selectivity found in the condensation reaction between 1,4-dialkyloxybenzene and paraformaldehyde, involving methanesulfonic acid as catalyst. Pillar[6]arene (P6) is obtained as the major product when using chloroform as solvent, while in dichloromethane pillar[5]arene (P5) is the dominant product. Accordingly, a series of P5 and P6 have been selectively synthesized with excellent yield.

14.
J Chem Phys ; 149(13): 134314, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30292228

RESUMEN

Studies of exciton and hole stabilization in multichromophoric systems underpin our understanding of electron transfer and transport in materials and biomolecules. The simplest model systems are dimeric, and recently we compared the gas-phase spectroscopy and dynamics of van der Waals dimers of fluorene, 9-methylfluorene (MF), and 9,9'-dimethylfluorene (F1) to assess how sterically controlled facial encumbrance modulates the dynamics of excimer formation and charge resonance stabilization (CRS). Dimers of fluorene and MF show only excimer emission upon electronic excitation, and significant CRS as evidenced in a reduced ionization potential for the dimer relative the monomer. By contrast, the dimer of F1 shows no excimeric emission, rather structured emission from the locally excited state of a tilted (non π-stacked) dimer, evidencing the importance of C-H/π interactions and increased steric constraints that restrict a cofacial approach. In this work, we report our full results on van der Waals clusters of F1, using a combination of theory and experiments that include laser-induced fluorescence, mass-selected two-color resonant two-photon ionization spectroscopy, and two-color appearance potential measurements. We use the latter to derive the binding energies of the F1 dimer in ground, excited, and cation radical states. Our results are compared with van der Waals and covalently linked clusters of fluorene to assess both the relative strength of π-stacking and C-H/π interactions in polyaromatic assemblies and the role of π-stacking in excimer formation and CRS.

15.
Chemistry ; 24(66): 17439-17443, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30238528

RESUMEN

Calixarenes have found widespread application as building blocks for the design and synthesis of functional materials in host-guest chemistry. The ongoing desire to develop a detailed understanding of the nature of NO bonding to multichromophoric π-stacked assemblies led us to develop an electron-rich methoxy derivative of calix[4]arene (3), which we show exists as a single conformer in solution at ambient temperature. Here, we examine the redox properties of this derivative, generate its cation radical (3+. ) using robust chemical oxidants, and determine the relative efficacy of its NO binding in comparison with model calixarenes. We find that 3/3+. is a remarkable receptor for NO+ /NO, with unprecedented binding efficacy. The availability of precise experimental structures of this calixarene derivative and its NO complex, obtained by X-ray crystallography, is critically important both for developing novel functional NO biosensors, and understanding the role of stacked aromatic donors in efficient NO binding, which may have relevance to biological NO transport.


Asunto(s)
Calixarenos/química , Óxido Nítrico/química , Fenoles/química , Calixarenos/metabolismo , Cationes , Cristalografía por Rayos X , Técnicas Electroquímicas , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrones , Modelos Moleculares , Conformación Molecular , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Oxidación-Reducción , Fenoles/metabolismo , Termodinámica
16.
J Phys Chem Lett ; 9(15): 4233-4238, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29985630

RESUMEN

There is much current interest in the design of molecular actuators, which undergo reversible, controlled motion in response to an external stimulus (light, heat, oxidation, etc.). Here we describe the design and synthesis of a series of cofacially arrayed polyfluorenes (MeF nH m) with varied end-capping groups, which undergo redox-controlled electromechanical actuation. Such cofacially arrayed polyfluorenes are a model molecular scaffold to investigate fundamental processes of charge and energy transfer across a π-stacked assembly, and we show with the aid of NMR and optical spectroscopies, X-ray crystallography and DFT calculations that in the neutral state the conformation of MeF nH1 and MeF nH2 is open rather than cofacial, with a conformational dependence that is highly influenced by the local environment. Upon (electro)chemical oxidation, these systems undergo a reversible transformation into a closed fully π-stacked conformation, driven by charge-resonance stabilization of the cationic charge. These findings are expected to aid the design of novel wire-like cofacially arrayed systems capable of undergo redox-controlled actuation.

17.
Org Biomol Chem ; 16(31): 5712-5717, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30047977

RESUMEN

Electro-active polychromophoric assemblies that undergo clam-like electromechanic actuation represent an important class of organic functional materials. Here, we show that the readily available cyclotetraveratrylene (CTTV) undergoes oxidation-induced folding, consistent with interconversion from a non-cofacial "sofa" conformation to a cofacial "boat" conformer. It is found that the non-cofacial "sofa" conformer of CTTV forms stable electron donor-acceptor complexes with chloranil and DDQ. Electron-transfer induced conformational transformation in CTTV provides a framework for the rational design of novel organic functional molecules.

18.
Chemistry ; 24(50): 13106-13109, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30033629

RESUMEN

The synthesis of a doubly-annulated m-terphenyl-based tweezer platform has been developed, which affords ready incorporation of various pincer units from monobenzenoid to polybenzenoid electron donors. The complexation study with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as guest has been carried out, and the crystal structure of T-Py∩DDQ reveals the sandwich-type binding mode in the solid state.

19.
J Phys Chem Lett ; 9(14): 3978-3986, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29952570

RESUMEN

Since the first application of frontier molecular orbitals (FMOs) to rationalize stereospecificity of pericyclic reactions, FMOs have remained at the forefront of chemical theory. Yet, the practical application of FMOs in the rational design and synthesis of novel charge transfer materials remains under-appreciated. In this Perspective, we demonstrate that molecular orbital theory is a powerful and universal tool capable of rationalizing the observed redox/optoelectronic properties of various aromatic hydrocarbons in the context of their application as charge-transfer materials. Importantly, the inspection of FMOs can provide instantaneous insight into the interchromophoric electronic coupling and polaron delocalization in polychromophoric assemblies, and therefore is invaluable for the rational design and synthesis of novel materials with tailored properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...