Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(17): 11488-11496, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056304

RESUMEN

Crystalline biofilm formation in indwelling urinary catheters is a serious health problem as it creates a barrier for antibacterial coatings. This emphasizes the failure of antibacterial coatings that do not have a mechanism to reduce crystal deposition on catheter surfaces. In this study, trifluoropropyl spray-coated polydimethylsiloxane (TFP-PDMS) has been employed as an antibiofilm forming surface without any antibacterial agent. Here, TFP was coated on half-cured PDMS using the spray coating technique to obtain a durable superhydrophobic coating for a minimum five cycles of different sterilization methods. The crystalline biofilm-forming ability of Proteus mirabilis in artificial urine, under static and flow conditions, was assessed on a TFP-PDMS surface. In comparison to the commercially available silver-coated latex and silicone catheter surfaces, TFP-PDMS displayed reduced bacterial attachment over 14 days. Moreover, the elemental analysis determined by atomic absorption spectroscopy and energy-dispersive X-ray analysis revealed that the enhanced antibiofilm forming ability of TFP-PDMS was due to the self-cleaning activity of the surface. We believe that this modified surface will significantly reduce biofilm formation in indwelling urinary catheters and further warrant future clinical studies.

3.
Nanomaterials (Basel) ; 5(1): 351-365, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28347015

RESUMEN

The effects of chaotic advection on the in situ assembly of a hierarchal nanocomposite of Poly Amide 6, (nylon 6 or PA6) and platelet shape nanoparticles (NPs) were studied. The assemblies were formed by chaotic advection, where melts of pristine PA6 and a mixture of PA6 with NPs were segregated into discrete layers and extruded into film in a continuous process. The process assembles the nanocomposite into alternating pristine-polymer and oriented NP/polymer layers. The structure of these hierarchal assemblies was probed by X-rays as a processing parameter, N, was varied. This parameter provides a measure of the extent of in situ structuring by chaotic advection. We found that all assemblies are semi-crystalline at room temperature. Increasing N impacts the ratio of α to γ crystalline forms. The effects of the chaotic advection vary with the concentration of the NPs. For nanocomposites with lower NP concentrations the amount of the γ crystalline form increased with N. However, at higher NP concentrations, interfacial effects of the NP play a significant role in determining the structure, where the NPs oriented along the melt flow direction and the polymer chains oriented perpendicular to the NP surfaces.

4.
ACS Appl Mater Interfaces ; 5(9): 3524-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23387998

RESUMEN

Particles with hierarchical porosity can be formed by templating silica microparticles with a specially designed surfactant micelle/oil nanoemulsion mixture. The nanoemulsion oil droplet and micellar dimensions determine the pore size distribution: one set of pores with diameters of tens of nanometers coexisting with a second subset of pores with diameters of single nanometers. Further practical utility of these nanoporous particles requires precise tailoring of the hierarchical pore structure. In this synthesis study, the particle nanostructure is tuned by adjusting the oil, water, and surfactant mixture composition for the controlled design of nanoemulsion-templated features. We also demonstrate control of the size distribution and surface area of the smaller micelle-templated pores as a consequence of altering the hydrophobic chain length of the molecular surfactant template. Moreover, a microfluidic system is designed to process the low interfacial system for fabrication of monodisperse porous particles. The ability to direct the assembly of template nanoemulsion and micelle structures creates new opportunities to engineer hierarchically porous particles for utility as electrocatalysts for fuel cells, chromatography separations, drug delivery vehicles, and other applications.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Óxidos/química , Emulsiones/química , Micelas , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/química , Cloruro de Sodio/química , Propiedades de Superficie
5.
Biophys J ; 99(5): 1475-81, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20816059

RESUMEN

The interaction of beta-cyclodextrin (beta-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after beta-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by beta-CD, indicating that beta-CD is unable to remove sphingomyelin or complexed Chol. However, beta-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by beta-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of beta-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by beta-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane.


Asunto(s)
Membrana Celular/química , Membrana Celular/efectos de los fármacos , Colesterol/química , Esfingomielinas/química , beta-Ciclodextrinas/farmacología , Animales , Membrana Celular/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Conformación Molecular , Difracción de Neutrones , Esfingomielinas/metabolismo , beta-Ciclodextrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...