Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422022

RESUMEN

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Asunto(s)
Linfoma de Células B , Proteínas Represoras , Animales , Ratones , Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Microambiente Tumoral
3.
Nat Commun ; 10(1): 3276, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332177

RESUMEN

The survival of ischaemic cardiomyocytes after myocardial infarction (MI) depends on the formation of new blood vessels. However, endogenous neovascularization is inefficient and the regulatory pathways directing coronary vessel growth are not well understood. Here we describe three independent regulatory pathways active in coronary vessels during development through analysis of the expression patterns of differentially regulated endothelial enhancers in the heart. The angiogenic VEGFA-MEF2 regulatory pathway is predominantly active in endocardial-derived vessels, whilst SOXF/RBPJ and BMP-SMAD pathways are seen in sinus venosus-derived arterial and venous coronaries, respectively. Although all developmental pathways contribute to post-MI vessel growth in the neonate, none are active during neovascularization after MI in adult hearts. This was particularly notable for the angiogenic VEGFA-MEF2 pathway, otherwise active in adult hearts and during neoangiogenesis in other adult settings. Our results therefore demonstrate a fundamental divergence between the regulation of coronary vessel growth in healthy and ischemic adult hearts.


Asunto(s)
Vasos Coronarios/metabolismo , Corazón/fisiopatología , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/fisiopatología , Transducción de Señal , Animales , Animales Recién Nacidos , Vasos Coronarios/fisiopatología , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Nat Commun ; 10(1): 453, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692543

RESUMEN

Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-ß and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Venas/metabolismo , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Receptor EphB4/genética , Receptor EphB4/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
J Physiol ; 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29917232

RESUMEN

KEY POINTS: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF-2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma-like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF-2α. Taken together, these findings demonstrate a key role for the PHD2-HIF-2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body. ABSTRACT: The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests a rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialized chemoreceptive functions of that organ and, potentially, to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10% oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to (or from) that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with a greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multilineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body with respect to the oxygen sensing and adaptive functions of that organ.

7.
Development ; 144(14): 2629-2639, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619820

RESUMEN

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/embriología , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Receptor Notch1/deficiencia , Factores de Transcripción SOXF/deficiencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Genes Dev ; 30(20): 2297-2309, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27898394

RESUMEN

Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/metabolismo , Neovascularización Fisiológica/genética , Animales , Células Cultivadas , Embrión no Mamífero , Células Endoteliales/enzimología , Elementos de Facilitación Genéticos/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neovascularización Patológica/genética , Dominios y Motivos de Interacción de Proteínas , Retina/embriología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
10.
Arterioscler Thromb Vasc Biol ; 36(6): 1209-19, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079877

RESUMEN

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.


Asunto(s)
Arterias/metabolismo , Células Endoteliales/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neovascularización Fisiológica , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Arterias/embriología , Sitios de Unión , Elementos de Facilitación Genéticos , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Intrones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOX/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Venas/embriología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Oncotarget ; 7(2): 1107-19, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26701730

RESUMEN

Epithelial to mesenchymal transition (EMT) of cancer cells involves loss of epithelial polarity and adhesiveness, and gain of invasive and migratory mesenchymal behaviours. EMT occurs in prostate cancer (PCa) but it is unknown whether this is in specific areas of primary tumours. We examined whether any of eleven EMT-related proteins have altered expression or subcellular localisation within the extraprostatic extension component of locally advanced PCa compared with other localisations, and whether similar changes may occur in in vitro organotypic PCa cell cultures and in vivo PCa models. Expression profiles of three proteins (E-cadherin, Snail, and α-smooth muscle actin) were significantly different in extraprostatic extension PCa compared with intra-prostatic tumour, and 18/27 cases had an expression change of at least one of these three proteins. Of the three significantly altered EMT proteins in pT3 samples, one showed similar significantly altered expression patterns in in vitro organotypic culture models, and two in in vivo Pten-/- model samples. These results suggest that changes in EMT protein expression can be observed in the extraprostatic extension component of locally invasive PCa. The biology of some of these changes in protein expression may be studied in certain in vitro and in vivo PCa models.


Asunto(s)
Actinas/biosíntesis , Cadherinas/biosíntesis , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/metabolismo , Factores de Transcripción de la Familia Snail/biosíntesis , Anciano , Animales , Línea Celular Tumoral , Humanos , Inmunohistoquímica , Masculino , Ratones Noqueados , Persona de Mediana Edad , Neoplasias de la Próstata/patología , Análisis de Matrices Tisulares
12.
J Physiol ; 594(5): 1179-95, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26337139

RESUMEN

Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Proliferación Celular , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Ventilación Pulmonar , Factores de Transcripción/metabolismo , Animales , Cuerpo Carotídeo/citología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética
13.
PLoS One ; 9(10): e111384, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360797

RESUMEN

The Hippo pathway, by tightly controlling the phosphorylation state and activity of the transcription cofactors YAP and TAZ is essential during development and tissue homeostasis whereas its deregulation may lead to cancer. Recent studies have linked the apicobasal polarity machinery in epithelial cells to components of the Hippo pathway and YAP and TAZ themselves. However the molecular mechanism by which the junctional pool of YAP proteins is released and activated in epithelial cells remains unknown. Here we report that the tumour suppressor ASPP2 forms an apical-lateral polarity complex at the level of tight junctions in polarised epithelial cells, acting as a scaffold for protein phosphatase 1 (PP1) and junctional YAP via dedicated binding domains. ASPP2 thereby directly induces the dephosphorylation and activation of junctional YAP. Collectively, this study unearths a novel mechanistic paradigm revealing the critical role of the apical-lateral polarity complex in activating this localised pool of YAP in vitro, in epithelial cells, and in vivo, in the murine colonic epithelium. We propose that this mechanism may commonly control YAP functions in epithelial tissues.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Polaridad Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Células CACO-2 , Proteínas de Ciclo Celular , Humanos , Fosforilación , Proteína Fosfatasa 1/metabolismo , Transporte de Proteínas , Uniones Estrechas/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(44): 17969-74, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127607

RESUMEN

Squamous cell carcinoma (SCC) is highly malignant and refractory to therapy. The majority of existing mouse SCC models involve multiple gene mutations. Very few mouse models of spontaneous SCC have been generated by a single gene deletion. Here we report a haploinsufficient SCC mouse model in which exon 3 of the Tp53BP2 gene (a p53 binding protein) was deleted in one allele in a BALB/c genetic background. Tp53BP2 encodes ASPP2 (ankyrin repeats, SH3 domain and protein rich region containing protein 2). Keratinocyte differentiation induces ASPP2 and its expression is inversely correlated with p63 protein in vitro and in vivo. Up-regulation of p63 expression is required for ASPP2(Δexon3/+) BALB/c mice to develop SCC, as heterozygosity of p63 but not p53 prevents them from developing it. Mechanistically, ASPP2 inhibits ΔNp63 expression through its ability to bind IκB and enhance nuclear Rel/A p65, a component of the NF-κB transcription complex, which mediates the repression of p63. Reduced ASPP2 expression associates with tumor metastasis and increased p63 expression in human head and neck SCCs. This study identifies ASPP2 as a tumor suppressor that suppresses SCC via inflammatory signaling through NF-κB-mediated repression of p63.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Modelos Animales de Enfermedad , Fosfoproteínas/metabolismo , Transducción de Señal/inmunología , Transactivadores/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas Supresoras de Tumor/inmunología , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Línea Celular , Cruzamientos Genéticos , Cartilla de ADN/genética , Haploinsuficiencia , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Supresoras de Tumor/genética
15.
Proc Natl Acad Sci U S A ; 110(29): 11893-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818617

RESUMEN

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Asunto(s)
Arterias/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Pez Cebra
16.
Cancer Cell ; 23(5): 618-33, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23623661

RESUMEN

Nearly 90% of human melanomas contain inactivated wild-type p53, the underlying mechanisms for which are not fully understood. Here, we identify that cyclin B1/CDK1-phosphorylates iASPP, which leads to the inhibition of iASPP dimerization, promotion of iASPP monomer nuclear entry, and exposure of its p53 binding sites, leading to increased p53 inhibition. Nuclear iASPP is enriched in melanoma metastasis and associates with poor patient survival. Most wild-type p53-expressing melanoma cell lines coexpress high levels of phosphorylated nuclear iASPP, MDM2, and cyclin B1. Inhibition of MDM2 and iASPP phosphorylation with small molecules induced p53-dependent apoptosis and growth suppression. Concurrent p53 reactivation and BRAFV600E inhibition achieved additive suppression in vivo, presenting an alternative for melanoma therapy.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Ciclina B1/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma/metabolismo , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Dimerización , Humanos , Imidazoles/farmacología , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/análisis , Puntos de Control de la Fase M del Ciclo Celular , Melanoma/genética , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Nocodazol/farmacología , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/análisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Represoras/análisis , Sulfonamidas/farmacología , Triazoles/farmacología , Vemurafenib , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Proc Natl Acad Sci U S A ; 109(33): 13325-30, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847423

RESUMEN

RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2((Δ3/Δ3)) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce.


Asunto(s)
Autofagia , Fibroblastos/citología , Fibroblastos/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Senescencia Celular , Embrión no Mamífero/citología , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Estabilidad Proteica , Proteínas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(40): 16645-50, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21930934

RESUMEN

Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is the most ancient member of the ASPP family of proteins and an evolutionarily conserved inhibitor of p53. iASPP is also a binding partner and negative regulator of p65RelA. Because p65RelA and the p53 family members often have opposite effects in controlling cell fate, it is important to understand the cellular context in which iASPP can regulate their activities. To address this question and to study the biological importance of iASPP in vivo, we generated a transgenic mouse in which iASPP expression is controlled by the Cre/loxP recombination system. We observed that iASPP is able to prevent premature cellular senescence in mouse embryonic fibroblasts. iASPP loss resulted in increased differentiation of primary keratinocytes both in vitro and in vivo. In stratified epithelia, nuclear iASPP often colocalized with p63 in the nuclei of basal keratinocytes. Consistent with this, iASPP bound p63 and inhibited the transcriptional activity of both TAp63α and ΔNp63α in vitro and influenced the expression level of p63-regulated genes such as loricrin and involucrin in vivo. In contrast, under the same conditions, p65RelA was frequently expressed as a cytoplasmic protein in the suprabasal layers of stratified epithelia and rarely colocalized with nuclear iASPP. Thus, iASPP is likely to control epithelial stratification by regulating p63's transcriptional activity, rather than p65RelA's. This study identifies iASPP as an inhibitor of senescence and a key player in controlling epithelial stratification.


Asunto(s)
Senescencia Celular/genética , Epitelio/fisiología , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Queratinocitos/fisiología , Proteínas Represoras/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Precursores de Proteínas/metabolismo , Proteínas Represoras/genética
19.
Proc Natl Acad Sci U S A ; 107(45): 19479-84, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20962274

RESUMEN

The tumor suppressor p53 is a master sensor of stress, and posttranslational modifications are key in controlling its stability and transcriptional activities. p53 can be phosphorylated on at least 23 Ser/Thr residues, the majority of which are phosphorylated by stress-related kinases. An exception is Ser315 in human p53 (Ser312 in mouse), which is predominantly phosphorylated by cell cycle-related kinases. To understand the biological importance of Ser312 phosphorylation in vivo, we generated p53Ser312Ala knock-in mice. We show here that, although Ser312 is not essential for mouse life span under normal physiological conditions, Ser312Ala mutation dampens p53's activity during embryonic development. This is evident from its partial rescue of embryonic lethality caused by Mdm4 deletion. In agreement with the notion that Ser312 mutation weakens p53 function, Ser312Ala mice are also more susceptible to tumorigenesis following a sublethal ionizing radiation dose. Importantly, in the cohort studied, Ser312 mutation predisposes mice to develop thymic lymphomas and liver tumors, partly due to p53Ser312Ala's inability to fully induce a set of p53 target genes including p21 and cyclin G1. Thus, we demonstrate that phosphorylation of Ser312 is required for p53 to function fully as a tumor suppressor in vivo.


Asunto(s)
Neoplasias/etiología , Serina/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Animales , Ciclina G1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Desarrollo Embrionario/genética , Técnicas de Sustitución del Gen , Neoplasias Hepáticas/etiología , Linfoma/etiología , Ratones , Mutación Missense , Fosforilación , Neoplasias del Timo/etiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Dev Cell ; 19(1): 126-37, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20619750

RESUMEN

Cell polarity plays a key role in the development of the central nervous system (CNS). Interestingly, disruption of cell polarity is seen in many cancers. ASPP2 is a haplo-insufficient tumor suppressor and an activator of the p53 family. In this study, we show that ASPP2 controls the polarity and proliferation of neural progenitors in vivo, leading to the formation of neuroblastic rosettes that resemble primitive neuroepithelial tumors. Consistent with its role in cell polarity, ASPP2 influences interkinetic nuclear migration and lamination during CNS development. Mechanistically, ASPP2 maintains the integrity of tight/adherens junctions. ASPP2 binds Par-3 and controls its apical/junctional localization without affecting its expression or Par-3/aPKC lambda binding. The junctional localization of ASPP2 and Par-3 is interdependent, suggesting that they are prime targets for each other. These results identify ASPP2 as a regulator of Par-3, which plays a key role in controlling cell proliferation, polarity, and tissue organization during CNS development.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Sistema Nervioso Central/embriología , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , Proteínas de Ciclo Celular , Polaridad Celular/fisiología , Proliferación Celular , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Cartilla de ADN/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/anomalías , Neocórtex/embriología , Neuronas/citología , Neuronas/metabolismo , Embarazo , Unión Proteica , Retina/anomalías , Retina/embriología , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...