Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(33): 18668-18675, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37581382

RESUMEN

The development of covalent organic frameworks (COFs) during the past decades has led to a variety of promising applications within gas storage, catalysis, drug delivery, and sensing. Even though most described synthesis methods result in powdery COFs with uncontrolled grain size, several approaches to grow COF films have recently been explored. However, in all COFs so far presented, the isolated materials are chemically homogeneous, with all functionalities homogeneously distributed throughout the entire material. Strategies to synthetically manipulate the spatial distribution of functionalities in a single film would be game changing. Specifically, this would allow for the introduction of local functionalities and even consecutive functions in single frameworks, thus broadening their synthetic versatility and application potential. Here, we synthesize two 3D crystalline COF films. The frameworks, the ionic B-based and neutral C-based COFs, have similar unit cell parameters, which enables their epitaxial stacking in a layered 3D COF film. The film growth was monitored in real time using a quartz crystal microbalance, showing linear growth with respect to reaction time. The high degree of polymerization was confirmed by chemical analysis and vibrational spectroscopy. Their polycrystalline and anisotropic natures were confirmed with grazing incidence X-ray diffraction. We further expand the scope of the concept by making layered films from COF-300 and its iodinated derivative. Finally, the work presented here will pave the path for multifunctional COF films where concurrent functionalities are embedded in the same crystalline material.

2.
J Am Chem Soc ; 142(14): 6548-6553, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186875

RESUMEN

Inherently porous materials that are chemically and structurally robust are challenging to construct. Conventionally, dynamic chemistry is thought to be needed for the formation of uniform porous organic frameworks, but dynamic bonds can limit the stability of these materials. For this reason, all-carbon-linked frameworks are expected to exhibit higher stability performance than more traditional porous frameworks. However, the limited reversibility of carbon-carbon bond-forming reactions has restricted the exploration of these materials. In particular, the challenges associated with producing uniform thin films of all-carbon-linked frameworks has inhibited the study of these materials in applications where well-defined films are required. Here, we synthesize continuous and homogeneous films of two different all-carbon-linked three-dimensional porous aromatic frameworks with nanometer-precision thickness (PAF-1 and BCMP-2). This was accomplished by kinetically promoting surface reactivity while suppressing homogeneous nucleation. Through connection of the PAF film to a gold substrate via a self-assembled monolayer and use of flow conditions to continually introduce monomers, smooth and continuous PAF films can be grown with controlled thickness. This strategy allows traditional transition metal mediated carbon-carbon cross-coupling reactions to form porous, organic thin films. We expect that the chemical principles uncovered in this study will enable the synthesis of a variety of chemically and structurally diverse carbon-carbon-linked frameworks as high-quality films, which are inaccessible by conventional methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...