Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 5(8): 935-951, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30128318

RESUMEN

OBJECTIVE: Anti-NMDA receptor encephalitis (ANRE) is a potentially lethal encephalitis attributed to autoantibodies against the N-methyl-D-aspartate receptor (NMDAR). We sought to clone and characterize monoclonal antibodies (mAbs) from an ANRE patient. METHODS: We used a hybridoma method to clone two IgG mAbs from a female patient with ANRE without teratoma, and characterized their binding activities on NMDAR-transfected cell lines, cultured primary rat neurons, and mouse hippocampus. We also assessed their effects on voluntary locomotor activity in mice and binding to NMDAR in vivo. RESULTS: The mAbs are structurally distinct and arose from distinct B-cell lineages. They recognize different epitopes on the GluN1 amino terminal domain (ATD), yet both require amino acids important for post-translational modification. Both mAbs bind subsets of GluN1 on cultured rat hippocampal neurons. The 5F5 mAb binds mouse brain hippocampal tissues, and the GluN1 recognized on cultured rat neurons was substantially extra-synaptic. Antibody binding to primary hippocampal neurons induced receptor internalization. The NMDAR inhibitor MK-801 inhibited internalization without preventing mAb binding; AP5 inhibited both mAb binding and internalization. Exposure of mice to the mAbs following permeabilization of the blood brain barrier increased voluntary wheel running activity, similar to low doses of the NMDAR inhibitor, MK-801. INTERPRETATION: These mAbs recapitulate features demonstrated in previous studies of ANRE patient CSF, and exert effects on NMDAR in vitro and in vivo consistent with modulation of NMDAR activity.

2.
BMC Biotechnol ; 18(1): 41, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945600

RESUMEN

BACKGROUND: Anti-NMDA receptor encephalitis (ANRE) is a potentially lethal disease attributed to auto-antibodies against the N-methyl-D-aspartate receptor (NMDAR). Full recovery is possible if therapy is initiated early in the disease course. Detection of ANRE antibodies in the cerebrospinal fluid (CSF) is essential for diagnosis. The assays for ANRE-associated IgGs often rely on cells transiently transfected with NMDAR genes. A cell line that stably expresses pathogenic NMDAR epitopes could improve standardization of the assays and provide antigen that could be used in commercial solid state assay systems. RESULTS: We expressed the amino terminal domain (ATD) of the GluN1 NMDAR subunit (NR1) as a fusion protein on the outer plasma membrane of 293T cells, creating a stable cell population (293T-ATD) that is recognized by ANRE patient monoclonal antibodies in flow cytometry and immunofluorescence assays. The ATD fusion protein also contains a Myc tag and a 6XHIS tag, which provide functionality for immunoassays and antigen purification, and a TEV protease site, which allows the ATD domain to be specifically released from the cells in essentially pure form. ATD mobilized from the 293T ATD cell line maintained the pathogenic ANRE epitopes in ELISA binding assays. CSF (3/4) and sera (4/4) from ANRE patients also bound the 293T-ATD cell line, whereas normal CSF and sera did not. CONCLUSIONS: The 293T-ATD cell line is potentially adaptable to a variety of formats to identify antibodies associated with ANRE, including cell-based and soluble antigen formats, and demonstrates a useful method to produce complex proteins for research, drug discovery, and clinical diagnosis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Anticuerpos Monoclonales/inmunología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Línea Celular , Endopeptidasas/genética , Epítopos , Células HEK293 , Humanos , Proteínas de la Membrana/inmunología , Proteínas Recombinantes/inmunología
3.
Adv Pharmacol ; 82: 235-260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29413523

RESUMEN

In slightly more than 10 years, anti-NMDA receptor (NMDAR) encephalitis has changed from a rare paraneoplastic syndrome to the most common cause of nonviral encephalitis. It presents fulminantly with progressive psychosis, seizures, and autonomic dysfunction, leading to death if untreated. However, rapid recognition and treatment can lead to survival and a return to baseline levels of functioning in many patients. While initially associated with ovarian teratomas, it is now associated with other tumors and can reflect a postviral event. The antibodies to the NMDAR made in this syndrome are pathogenic and are directed at the extracellular domain of the GluN1 subunit. Such antibodies lead to internalization of NMDARs in model systems, leading to a physiological state characterized by NMDAR hypofunction. Analogous disorders, characterized by antibodies to other synaptic receptors, present with neurological and psychiatric dysfunction and also appear to reflect antibody-induced internalization of receptors. However, this simple pathophysiology may be too simplistic to reflect the complexity of events in anti-NMDAR encephalitis. Future scientific investigations may allow a more complete understanding of this disorder and improve treatment of anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/fisiopatología , Humanos , Modelos Biológicos , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Dis Model Mech ; 10(12): 1529-1538, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259026

RESUMEN

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model.


Asunto(s)
Cerebelo/patología , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Sinapsis/metabolismo , Sinapsis/patología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Envejecimiento/patología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Proteínas de Unión a Hierro/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Parvalbúminas/metabolismo , Terminales Presinápticos/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología , Células de Purkinje/ultraestructura , Sinapsis/ultraestructura , Frataxina
6.
Dis Model Mech ; 10(11): 1343-1352, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29125827

RESUMEN

Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Biogénesis de Organelos , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón , Proteínas de Unión a Hierro/metabolismo , Ratones Noqueados , Subunidades de Proteína/metabolismo , Frataxina
7.
Int J Med Sci ; 10(4): 362-76, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23470960

RESUMEN

In this report we present a method to cultivate Borrelia spirochetes from human serum samples with high efficiency. This method incorporates improved sample collection, optimization of culture media and use of matrix protein. The method was first optimized utilizing Borrelia laboratory strains, and later by demonstrating growth of Borrelia from sera from fifty seropositive Lyme disease patients followed by another cohort of 72 Lyme disease patients, all of whom satisfied the strict CDC surveillance case definition for Lyme disease. The procedure resulted in positive cultures in 47% at 6 days and 94% at week 16. Negative controls included 48 cases. The positive identification of Borrelia was performed by immunostaining, PCR, and direct DNA sequencing.


Asunto(s)
Infecciones por Borrelia/microbiología , Borrelia burgdorferi/aislamiento & purificación , Técnicas de Cultivo de Célula , Enfermedad de Lyme/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Borrelia burgdorferi/citología , Borrelia burgdorferi/patogenicidad , Niño , Preescolar , Medios de Cultivo/química , Femenino , Humanos , Enfermedad de Lyme/sangre , Enfermedad de Lyme/microbiología , Masculino , Persona de Mediana Edad , Estados Unidos
8.
PLoS One ; 7(10): e48277, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110225

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS) matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Borrelia burgdorferi/crecimiento & desarrollo , Borrelia burgdorferi/metabolismo , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA