Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 52(2-3): 135-143, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34715088

RESUMEN

Early transcribed membrane proteins form a unique protein family in malaria parasites. These molecules are expressed during Plasmodium intracellular phases and inserted at the parasite parasitophorus vacuole membrane, which constitutes the host-parasite interface. Upregulated in infectious sporozoites 4 (UIS4) is an essential early transcribed membrane protein of liver stages of the murine malaria model parasite Plasmodium berghei. Despite its relevance for liver stage maturation, the molecular functions of UIS4 remain elusive, and UIS4 orthologs in human malaria parasites have not yet been identified. In order to characterise functional domains of UIS4, we generated P. berghei parasites carrying a carboxy-terminally truncated version of UIS4. We observed that uis4Δc parasites are severely impaired in liver stage development, similar to uis4(-) parasites, indicating an important role of the C-terminal domain for UIS4 function. To test whether members of the P. falciparum early transcribed membrane protein family are potential UIS4 orthologs, we selected candidates based on structural homology and parasitophorous vacuole membrane localization. We generated transgenic P. berghei parasites where UIS4 was replaced by Plasmodium falciparum ETRAMP8 or ETRAMP10.3. Both early transcribed membrane proteins were expressed in transgenic parasite lines, but liver stage maturation was impaired, indicating that the selected early transcribed membrane proteins failed to substitute the function of UIS4. As a control, we included the UIS4 ortholog from the murine parasite Plasmodium chaubaudi. We observed that PcUIS4 successfully restores UIS4 function in P. berghei. Together, these results suggest that Plasmodium parasites express tailor-made parasitophorous vacuole membrane proteins that might at least partially explain the narrow host range of malaria parasites.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Animales Modificados Genéticamente , Especificidad del Huésped , Humanos , Hígado/parasitología , Malaria Falciparum/metabolismo , Proteínas de la Membrana/genética , Ratones , Parásitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos
2.
Int J Parasitol ; 50(6-7): 511-522, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32445722

RESUMEN

Parasites of the genus Plasmodium infect a wide range of mammalian hosts including humans, primates, bats and arboreal rodents. A hallmark of Plasmodium spp. is the very narrow host range, indicative of matching parasite-host coevolution. Accordingly, their respective genomes harbour many unique genes and gene families that typically encode proteins involved in host cell recognition and remodelling. Whether and to what extent conserved proteins that are shared across Plasmodium spp. also exert distinct species-specific roles remains largely untested. Here, we present detailed functional profiling of the female gametocyte-specific ATP-binding cassette transporter gABCG2 in the murine parasite Plasmodium berghei and compare our findings with data from the orthologous gene in the human parasite Plasmodium falciparum. We show that P. berghei gABCG2 is female-specific and continues to be expressed in zygotes and ookinetes. In contrast to a distinct localization to Iipid-rich gametocyte-specific spots as observed in P. falciparum, the murine malaria parasite homolog is found at the parasite plasma membrane. Plasmodium berghei lacking gABCG2 displays fast asexual blood-stage replication and increased proportions of female gametocytes, consistent with the corresponding P. falciparum knock-out phenotype. Strikingly, cross-species replacement of gABCG2 in either the murine or the human parasite did not restore normal growth rates. The lack of successful complementation despite high conservation across Plasmodium spp. is an indicator of distinct adaptations and tight parasite-host coevolution. Hence, incompatibility of conserved genes in closely related Plasmodium spp. might be more common than previously anticipated.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Femenino , Humanos , Malaria Falciparum , Ratones
3.
Mol Biochem Parasitol ; 193(2): 101-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24657782

RESUMEN

Invasive stages of Plasmodium parasites possess distinct integral and peripheral membrane proteins that mediate host cell attachment and invasion. P113 is an abundant protein in detergent-resistant high molecular weight complexes in Plasmodium schizonts, but is unusual since expression extends to gametocytes and sporozoites. In this study, we tested whether P113 performs important functions for parasite propagation in Plasmodium berghei. We show that pre-erythrocytic expression of P113 displays key signatures of upregulated in infectious sporozoites (UIS) genes, including control by the liver stage master regulator SLARP. Targeted gene deletion resulted in viable blood stage parasites that displayed no signs of blood stage growth defects. p113(-) parasites propagated normally through the life cycle until mature sporozoites, but displayed defects during natural sporozoite transmission, leading to a delay to patency in infected animals. By comparative in vitro and in vivo analysis of pre-erythrocytic development and using a xeno-diagnostic test we show that ablation of P113 results in lower sporozoite to liver stage conversion and, as a consequence, reduced merozoite output in vivo, without delaying liver stage development. We conclude that p113 is dispensable for Plasmodium life cycle progression and plays auxiliary roles during pre-erythrocytic development.


Asunto(s)
Hígado/parasitología , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Estadios del Ciclo de Vida , Malaria/parasitología , Malaria/transmisión , Ratones Endogámicos C57BL , Ratones Endogámicos , Plasmodium berghei/citología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/genética
4.
Mol Biochem Parasitol ; 185(1): 19-26, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22705315

RESUMEN

Experimental reverse genetic approaches have proven powerful in the study of the biology of the malaria parasite. The murine malaria model parasite Plasmodium berghei is the genetically most amendable Plasmodium species and allows full access to the entire life cycle in vivo. Here, we describe a next-generation, highly versatile transfection vector set that facilitates advancing experimental genetic strategies towards a genome-wide scale. Through 36 consecutive cloning and 17 subcloning steps an optimized vector set was generated from the standard transfection plasmid. These targeting vectors, collectively referred to as the Berghei Adaptable Transfection (pBAT) plasmids, contain key elements that permit recycling of the drug-selectable cassette, robust green fluorescent labelling of recombinant parasites, carboxy-terminal tagging of target proteins with a red fluorescent-epitope tag fusion, and expression of heterologous genes. The vectors were further optimized for small size, versatile restriction endonuclease recognition sites and potential exchange of individual vector elements. We show that stable integration into a transgene expression site, an intergenic locus at a synteny breakpoint on P. berghei chromosome 6, is phenotypically silent and generated a bright green fluorescent parasite line for imaging applications. We provide an example, P. berghei actin 2, for targeted gene deletion and illustrate that the positive selection marker can be recycled, thereby permitting multiple rounds of genetic manipulations. We propose that the vectors described herein will greatly facilitate functional assignment to predicted and orphan Plasmodium gene models by multiple experimental genetics approaches.


Asunto(s)
Ingeniería Genética/métodos , Vectores Genéticos/genética , Genoma de Protozoos , Plasmodium berghei/genética , Transfección/métodos , Animales , Biomarcadores/metabolismo , Cromosomas/genética , Clonación Molecular , Eliminación de Gen , Sitios Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Estadios del Ciclo de Vida , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Organismos Modificados Genéticamente/genética , Fenotipo , Plásmidos/genética , Regiones Promotoras Genéticas , Sintenía , Transgenes
5.
PLoS Pathog ; 5(1): e1000270, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165333

RESUMEN

The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division.


Asunto(s)
Citocinesis/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/fisiología , Animales , Femenino , Ratones , Miosinas/metabolismo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Toxoplasma/crecimiento & desarrollo
6.
J Cell Sci ; 121(Pt 7): 947-56, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18319299

RESUMEN

Apicomplexan parasites rely on sequential secretion of specialised secretory organelles for the invasion of the host cell. First, micronemes release their content upon contact with the host cell. Second, rhoptries are discharged, leading to the formation of a tight interaction (moving junction) with the host cell, through which the parasite invades. The functional characterisation of several micronemal proteins in Toxoplasma gondii suggests the occurrence of a stepwise process. Here, we show that the micronemal protein MIC8 of T. gondii is essential for the parasite to invade the host cell. When MIC8 is not present, a block in invasion is caused by the incapability of the parasite to form a moving junction with the host cell. We furthermore demonstrate that the cytosolic domain is crucial for the function of MIC8 and can not be functionally complemented by any other micronemal protein characterised so far, suggesting that MIC8 represents a novel, functionally distinct invasion factor in this apicomplexan parasite.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Proteínas Protozoarias/fisiología , Toxoplasma/crecimiento & desarrollo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Genéticos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...