Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771086

RESUMEN

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Asunto(s)
Migración Animal , Cambio Climático , Comportamiento de Nidificación , Estaciones del Año , Animales , Regiones Árticas , Migración Animal/fisiología , Femenino , Charadriiformes/fisiología , Reproducción
2.
Ecotoxicology ; 32(8): 1062-1083, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37874523

RESUMEN

Mercury (Hg) pollution remains a concern to Arctic ecosystems, due to long-range transport from southern industrial regions and melting permafrost and glaciers. The objective of this study was to identify intrinsic, extrinsic, and temporal factors influencing Hg concentrations in Arctic-breeding shorebirds and highlight regions and species at greatest risk of Hg exposure. We analyzed 1094 blood and 1384 feather samples from 12 shorebird species breeding at nine sites across the North American Arctic during 2012 and 2013. Blood Hg concentrations, which reflect Hg exposure in the local area in individual shorebirds: 1) ranged from 0.01-3.52 µg/g ww, with an overall mean of 0.30 ± 0.27 µg/g ww; 2) were influenced by species and study site, but not sampling year, with birds sampled near Utqiagvik, AK, having the highest concentrations; and 3) were influenced by foraging habitat at some sites. Feather Hg concentrations, which reflected Hg exposure from the wintering grounds: 1) ranged from 0.07-12.14 µg/g fw in individuals, with an overall mean of 1.14 ± 1.18 µg/g fw; and 2) were influenced by species and year. Most Arctic-breeding shorebirds had blood and feather Hg concentrations at levels where no adverse effects of exposure were predicted, though some individuals sampled near Utqiagvik had Hg levels that would be considered of concern. Overall, these data increase our understanding of how Hg is distributed in the various shorebird breeding areas of the Arctic, what factors predispose Arctic-breeding shorebirds to Hg exposure, and lay the foundation for future monitoring efforts.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Humanos , Animales , Ecosistema , Aves , Mercurio/análisis , Cruzamiento
3.
Ecology ; 104(6): e4047, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37261395

RESUMEN

Tracking biodiversity shifts is central to understanding past, present, and future global changes. Recent advances in bioacoustics and the low cost of high-quality automatic recorders are revolutionizing studies in biogeography and community and behavioral ecology with a robust assessment of phenology, species occurrence, and individual activity. This large volume of acoustic recordings has recently generated a plethora of datasets that can now be handled automatically, mostly via big data methods such as deep learning. These approaches need high-quality annotations to classify and detect recorded sounds efficiently. However, very few strongly annotated datasets-that is, with detailed information on start and end time of each vocalization-are openly accessible to the public. Moreover, these datasets mostly cover temperate species and are usually limited to a single year of recordings. Here, we present ArcticBirdSounds, the first open-access, multisite, and multiyear strongly annotated dataset of arctic bird vocalizations. ArcticBirdSounds offers 20 h of annotated recordings over 2 years (2018, 2019), taken from 15 distinct plots within six locations across the Arctic, from Alaska to Greenland. Recordings cover the arctic vertebrates' breeding period and are evenly spaced during the day; they capture most species breeding there with 12,933 temporal annotations in 49 classes of sounds. While these data can be used for many pressing ecological questions, it is also a unique resource for methodological development to help meet the challenges of fast ecosystem transformations such as those happening in the Arctic. All data, including audio files, annotation files, and companion spreadsheets, are available in an Open Science Framework repository published under a CC BY 4.0 License.


Asunto(s)
Aves , Ecosistema , Animales , Regiones Árticas , Alaska , Biodiversidad
4.
PLoS One ; 18(5): e0285115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195973

RESUMEN

Competing theoretical perspectives about whether or not climate is the dominant factor influencing species' distributions at large spatial scales have important consequences when habitat suitability models are used to address conservation problems. In this study, we tested how much variables in addition to climate help to explain habitat suitability for Arctic-breeding shorebirds. To do this we model species occupancy using path analyses, which allow us to estimate the indirect effects of climate on other predictor variables, such as land cover. We also use deviance partitioning to quantify the total relative importance of climate versus additional predictors in explaining species occupancy. We found that individual land cover variables are often stronger predictors than the direct and indirect effects of climate combined. In models with both climate and additional variables, on average the additional variables accounted for 57% of the explained deviance, independent of shared effects with the climate variables. Our results support the idea that climate-only models may offer incomplete descriptions of current and future habitat suitability and can lead to incorrect conclusions about the size and location of suitable habitat. These conclusions could have important management implications for designating protected areas and assessing threats like climate change and human development.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Regiones Árticas , Predicción , Conservación de los Recursos Naturales
5.
Ecol Evol ; 13(2): e9797, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778838

RESUMEN

Aim: To test whether the occupancy of shorebirds has changed in the eastern Canadian Arctic, and whether these changes could indicate that shorebird distributions are shifting in response to long-term climate change. Location: Foxe Basin and Rasmussen Lowlands, Nunavut, Canada. Methods: We used a unique set of observations, made 25 years apart, using general linear models to test if there was a relationship between changes in shorebird species' occupancy and their species temperature Index, a simple version of a species climate envelope. Results: Changes in occupancy and density varied widely across species, with some increasing and some decreasing. This is despite that overall population trends are known to be negative for all of these species based on surveys during migration. The changes in occupancy that we observed were positively related to the species temperature index, such that the warmer-breeding species appear to be moving into these regions, while colder-breeding species appear to be shifting out of the regions, likely northward. Main Conclusions: Our results suggest that we should be concerned about declining breeding habitat availability for bird species whose current breeding ranges are centered on higher and colder latitudes.

6.
Ecol Evol ; 12(11): e9495, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381389

RESUMEN

Many populations of long-distance migrant shorebirds are declining rapidly. Since the 1970s, the lesser yellowlegs (Tringa flavipes) has experienced a pronounced reduction in abundance of ~63%. The potential causes of the species' decline are complex and interrelated. Understanding the timing of migration, seasonal routes, and important stopover and non-breeding locations used by this species will aid in directing conservation planning to address potential threats. During 2018-2022, we tracked 118 adult lesser yellowlegs using GPS satellite tags deployed on birds from five breeding and two migratory stopover locations spanning the boreal forest of North America from Alaska to Eastern Canada. Our objectives were to identify migratory routes, quantify migratory connectivity, and describe key stopover and non-breeding locations. We also evaluated predictors of southbound migratory departure date and migration distance. Individuals tagged in Alaska and Central Canada followed similar southbound migratory routes, stopping to refuel in the Prairie Pothole Region of North America, whereas birds tagged in Eastern Canada completed multi-day transoceanic flights covering distances of >4000 km across the Atlantic between North and South America. Upon reaching their non-breeding locations, lesser yellowlegs populations overlapped, resulting in weak migratory connectivity. Sex and population origin were significantly associated with the timing of migratory departure from breeding locations, and body mass at the time of GPS-tag deployment was the best predictor of southbound migratory distance. Our findings suggest that lesser yellowlegs travel long distances and traverse numerous political boundaries each year, and breeding location likely has the greatest influence on migratory routes and therefore the threats birds experience during migration. Further, the species' dependence on wetlands in agricultural landscapes during migration and the non-breeding period may make them vulnerable to threats related to agricultural practices, such as pesticide exposure.

7.
Ecol Evol ; 12(1): e8451, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127008

RESUMEN

Polar systems of avian migration remain unpredictable. For seabirds nesting in the Nearctic, it is often difficult to predict which of the world's oceans birds will migrate to after breeding. Here, we report on three related seabird species that migrated across four oceans following sympatric breeding at a central Canadian high Arctic nesting location. Using telemetry, we tracked pomarine jaeger (Stercorarius pomarinus, n = 1) across the Arctic Ocean to the western Pacific Ocean; parasitic jaeger (S. parasiticus, n = 4) to the western Atlantic Ocean, and long-tailed jaeger (S. longicaudus, n = 2) to the eastern Atlantic Ocean and western Indian Ocean. We also report on extensive nomadic movements over ocean during the postbreeding period (19,002 km) and over land and ocean during the prebreeding period (5578 km) by pomarine jaeger, an irruptive species whose full migrations and nomadic behavior have been a mystery. While the small sample sizes in our study limit the ability to make generalizable inferences, our results provide a key input to the knowledge of jaeger migrations. Understanding the routes and migratory divides of birds nesting in the Arctic region has implications for understanding both the glacial refugia of the past and the Anthropocene-driven changes in the future.

8.
PLoS One ; 16(12): e0260339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972114

RESUMEN

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/fisiología , Animales , Canadá , Geografía , Comunicaciones por Satélite , Estaciones del Año , Estados Unidos
9.
Sci Rep ; 11(1): 12919, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155292

RESUMEN

Each year hundreds of millions of birds cross the Atlantic Ocean during the peak of tropical cyclone activity. The extent and consequences of migrant-storm interactions remain unknown. We tracked whimbrels from two populations (Mackenzie Delta; Hudson Bay) to examine overlap between migration routes and storm activity and both the frequency and consequence of storm encounters. Here we show that Mackenzie Delta and Hudson Bay whimbrels follow different routes across the ocean and experience dramatically different rates of storm encounters. Mackenzie Delta whimbrels departed North America from Atlantic Canada, made long ([Formula: see text] = 5440 ± 120.3 km) nonstop flights far out to sea that took several days ([Formula: see text] = 6.1 ± 0.18) to complete and encountered storms during 3 of 22 crossings. Hudson Bay whimbrels departed North America from the south Atlantic Coast, made shorter ([Formula: see text] = 3643 ± 196.2 km) nonstop flights across the Caribbean Basin that took less time ([Formula: see text] = 4.5 ± 0.29) to complete and encountered storms during 13 of 18 crossings. More than half of Hudson Bay storm encounters resulted in groundings on Caribbean islands. Grounded birds required longer ([Formula: see text] = 30.4 ± 5.32 days) to complete trans-Atlantic crossings and three were lost including 2 to hunters and 1 to a predator. One of the Mackenzie Delta whimbrels was lost at sea while crossing the Intertropical Convergence Zone. Whimbrels use two contrasting strategies to cross the Atlantic including (1) a long nonstop flight around the core of storm activity with a low likelihood of encountering storms but no safety net and (2) a shorter flight through the heart of Hurricane Alley with a high likelihood of encountering storms and a safety network of islands to use in the event of an encounter. Demographic consequences of storm encounters will likely play a role in the ongoing evolution of trans-Atlantic migration pathways as global temperatures continue to rise.

10.
Front Microbiol ; 10: 2258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649627

RESUMEN

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

11.
Sci Rep ; 9(1): 9420, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263125

RESUMEN

Long-distance migrants are assumed to be more time-limited during the pre-breeding season compared to the post-breeding season. Although breeding-related time constraints may be absent post-breeding, additional factors such as predation risk could lead to time constraints that were previously underestimated. By using an automated radio telemetry system, we compared pre- and post-breeding movements of long-distance migrant shorebirds on a continent-wide scale. From 2014 to 2016, we deployed radio transmitters on 1,937 individuals of 4 shorebird species at 13 sites distributed across North America. Following theoretical predictions, all species migrated faster during the pre-breeding season, compared to the post-breeding season. These differences in migration speed between seasons were attributable primarily to longer stopover durations in the post-breeding season. In contrast, and counter to our expectations, all species had higher airspeeds during the post-breeding season, even after accounting for seasonal differences in wind. Arriving at the breeding grounds in good body condition is beneficial for survival and reproductive success and this energetic constraint might explain why airspeeds are not maximised in the pre-breeding season. We show that the higher airspeeds in the post-breeding season precede a wave of avian predators, which could suggest that migrant shorebirds show predation-minimizing behaviour during the post-breeding season. Our results reaffirm the important role of time constraints during northward migration and suggest that both energy and predation-risk constrain migratory behaviour during the post-breeding season.


Asunto(s)
Aves/fisiología , Vuelo Animal/fisiología , Migración Animal , Animales , Cruzamiento , Estaciones del Año , Telemetría
12.
Science ; 364(6445)2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31196986

RESUMEN

Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Animales , Regiones Árticas , Conducta Predatoria
13.
Ecol Evol ; 7(9): 3243-3256, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28480022

RESUMEN

We compiled a >50-year record of morphometrics for semipalmated sandpipers (Calidris pusilla), a shorebird species with a Nearctic breeding distribution and intercontinental migration to South America. Our data included >57,000 individuals captured 1972-2015 at five breeding locations and three major stopover sites, plus 139 museum specimens collected in earlier decades. Wing length increased by ca. 1.5 mm (>1%) prior to 1980, followed by a decrease of 3.85 mm (nearly 4%) over the subsequent 35 years. This can account for previously reported changes in metrics at a migratory stopover site from 1985 to 2006. Wing length decreased at a rate of 1,098 darwins, or 0.176 haldanes, within the ranges of other field studies of phenotypic change. Bill length, in contrast, showed no consistent change over the full period of our study. Decreased body size as a universal response of animal populations to climate warming, and several other potential mechanisms, are unable to account for the increasing and decreasing wing length pattern observed. We propose that the post-WWII near-extirpation of falcon populations and their post-1973 recovery driven by the widespread use and subsequent limitation on DDT in North America selected initially for greater flight efficiency and latterly for greater agility. This predation danger hypothesis accounts for many features of the morphometric data and deserves further investigation in this and other species.

14.
Nature ; 540(7631): 109-113, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27880762

RESUMEN

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Asunto(s)
Charadriiformes/fisiología , Comportamiento de Nidificación/fisiología , Periodicidad , Conducta Predatoria , Animales , Evolución Biológica , Charadriiformes/clasificación , Ritmo Circadiano , Señales (Psicología) , Ambiente , Conducta Alimentaria , Femenino , Masculino , Fotoperiodo , Reproducción , Especificidad de la Especie , Inanición/veterinaria , Factores de Tiempo , Cigoto/crecimiento & desarrollo
15.
Mov Ecol ; 4: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134752

RESUMEN

BACKGROUND: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.0 g total, representing 0.1-3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2-4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26-1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. RESULTS: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to negatively affect return rates if the total mass of geolocators and color markers was 2.5-5.8 % of body mass than if tags were 0.3-2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in geolocator effect size was high, suggesting that local factors were important. CONCLUSIONS: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the resulting migratory movement data in some species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...