Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 31843-31850, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38841859

RESUMEN

Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.


Asunto(s)
Bacteriorodopsinas , Técnicas Biosensibles , Cristales Líquidos , Técnicas Biosensibles/métodos , Cristales Líquidos/química , Concentración de Iones de Hidrógeno , Bacteriorodopsinas/química , Proteínas de la Membrana/química , Membrana Púrpura/química
2.
ACS Appl Bio Mater ; 7(1): 131-143, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38079569

RESUMEN

Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.


Asunto(s)
Productos Biológicos , Temperatura , Polímeros/química , Escherichia coli , Concentración de Iones de Hidrógeno
3.
NPJ Biofilms Microbiomes ; 8(1): 42, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618743

RESUMEN

The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK's National Biofilms Innovation Centre (NBIC). The outputs from this analysis and the workshops organised by NBIC on its research strategic themes have revealed the breath of opportunities for translational research in microbial biofilms. However, there are still many outstanding scientific and technological challenges which must be addressed in order to catalyse these opportunities. This perspective discusses some of these challenges.


Asunto(s)
Biopelículas
4.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215010

RESUMEN

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

5.
Nanomaterials (Basel) ; 11(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208469

RESUMEN

The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution, combining within the same nanostructure, a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution, allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core, surrounded by satellite Pt decorated CdS QDs (CdS@Pt), separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light, displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.

6.
Nanoscale Adv ; 3(11): 3136-3144, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-34124578

RESUMEN

Selective unidirectional transport of barium ions between droplets in a water-in-chloroform emulsion is demonstrated. Gold nanoparticles (GNPs) modified with a thiolated crown ether act as barium ion complexing shuttles that carry the ions from one population of droplets (source) to another (target). This process is driven by a steep barium ion concentration gradient between source and target droplets. The concentration of barium ions in the target droplets is kept low at all times by the precipitation of insoluble barium sulfate. A potential role of electrostatically coupled secondary processes that maintain the electroneutrality of the emulsion droplets is discussed. Charging of the GNP metal cores by electron transfer in the presence of the Fe(ii)/Fe(iii) redox couple appears to affect the partitioning of the GNPs between the water droplets and the chloroform phase. Processes have been monitored and studied by optical microscopy, Raman spectroscopy, cryogenic scanning electron microscopy (cryo-SEM) and zeta potential. The shuttle action of the GNPs has further been demonstrated electrochemically in a model system.

7.
NPJ Biofilms Microbiomes ; 7(1): 51, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155220

RESUMEN

In this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Dimetilpolisiloxanos , Nylons , Ácido Salicílico , Siliconas , Antibacterianos/síntesis química , Técnicas de Química Sintética , Dimetilpolisiloxanos/química , Liberación de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nylons/química , Ácido Salicílico/química , Siliconas/química , Análisis Espectral , Propiedades de Superficie
8.
ACS Appl Mater Interfaces ; 12(20): 22433-22443, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32320193

RESUMEN

Titanium implants in orthopedic applications can fail due to infection and impaired integration into the host. Most research efforts that facilitate osseointegration of the implant have not considered infection, and vice versa. Moreover, most infection control measures involve the use of conventional antibiotics which contributes to the global epidemic of antimicrobial resistance. Nitric oxide (NO) is a promising alternative to antibiotics, and while researchers have investigated NO releasing coatings, there are few reports on the function/robustness or the mechanism of NO release. Our comprehensive mechanistic study has allowed us to design, characterize, and optimize NO releasing coatings to achieve maximum antimicrobial efficacy toward bacteria with minimum cytotoxicity to human primary osteoblasts in vitro. As the antibiotic era is coming to an end and the future of infection control continues to demand new alternatives, the coatings described herein represent a promising therapeutic strategy for use in orthopedic surgeries.


Asunto(s)
Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Oseointegración/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Prótesis e Implantes , Titanio/química , Antibacterianos/farmacología , Compuestos Azo/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Silanos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Humectabilidad
9.
ACS Omega ; 5(10): 5229-5234, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32201811

RESUMEN

More than 60 million tons of sulfur are produced as a byproduct of the petrochemical industry annually. Recently, the inverse vulcanization process has transformed this excess sulfur into functional polymers by stabilization with organic cross-linkers. These interesting new polymers have many potential applications covering diverse areas. However, there has been very little focus on the potential of these high-sulfur polymers for their antibacterial properties. These properties are examined here by exposing two common bacteria species, Escherichia coli (E. Coli) and Staphylococcus aureus (S. aureus), to two structurally different, inverse vulcanized sulfur polymers: sulfur-co-diisopropenyl benzene (S-DIB) and sulfur dicyclopentadiene (S-DCPD). We report the highest bacteria log reduction (>log 4.3) of adhered bacterial cells (S. aureus) to an inverse vulcanized sulfur polymer to date and investigate the potential pathways in which antibacterial activity may occur.

10.
J Am Chem Soc ; 142(2): 847-856, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31825213

RESUMEN

Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity.

11.
Polymers (Basel) ; 11(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766551

RESUMEN

As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies. In the PS/PCL system, PS segregates to the air-polymer interface, with the lower solubility PCL preferring the substrate-polymer interface. In the PS/PMMA and PCL/PMMA systems, PMMA prefers the air-polymer interface due to its greater solubility and lower surface energy. The anti-adhesion efficacy of the demixed films were tested against Pseudomonas aeruginosa (PA14). PS/PCL and PCL/PMMA demixed films showed a significant reduction in cell counts adhered on their surfaces compared to pure polymer control films, while no reduction was observed in the counts adhered on PS/PMMA demixed films. While the specific morphology did not affect the adhesion, a relationship between bacterial cell and topographical surface feature size was apparent. If the surface feature was smaller than the cell, then an anti-adhesion effect was observed; if the surface feature was larger than the cell, then the bacteria preferred to adhere.

12.
Chem Sci ; 10(23): 5864-5874, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31360390

RESUMEN

Molecular walkers standing on two or more "feet" on an anisotropic periodic potential of a crystal surface may perform a one-dimensional Brownian motion at the surface-vacuum interface along a particular direction in which their mobility is the largest. In thermal equilibrium the molecules move with equal probabilities both ways along this direction, as expected from the detailed balance principle, well-known in chemical reactivity and in the theory of molecular motors. For molecules that possess an asymmetric potential energy surface (PES), we propose a generic method based on the application of a time-periodic external stimulus that would enable the molecules to move preferentially in a single direction thereby acting as Brownian ratchets. To illustrate this method, we consider a prototypical synthetic chiral molecular walker, 1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene, diffusing on the anisotropic Cu(110) surface along the Cu rows. As unveiled by our kinetic Monte Carlo simulations based on the rates calculated using ab initio density functional theory, this molecule moves to the nearest equivalent lattice site via the so-called inchworm mechanism in which it steps first with the rear foot and then with the front foot. As a result, the molecule diffuses via a two-step mechanism, and due to its inherent asymmetry, the corresponding PES is also spatially asymmetric. Taking advantage of this fact, we show how the external stimulus can be tuned to separate molecules of different chirality, orientation and conformation. The consequences of these findings for molecular machines and the separation of enantiomers are also discussed.

13.
14.
ACS Appl Bio Mater ; 2(11): 4801-4811, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-35021480

RESUMEN

Smart antimicrobial surfaces are a powerful tool to prevent bacterial colonization at surfaces. In this work, we report a successful strategy for the functionalization of polydimethylsiloxane (PDMS) surfaces, widely used in medical devices, with salicylic acid (SA), a biocide approved for use in humans. Antimicrobial PDMS surfaces were fabricated via a rational design in which bifunctional silane linker molecules were covalently grafted onto the PDMS via one end, while soft intermolecular interactions with SA were generated at the other end to enable reversible load and release of the biocide. A molecular level understanding of the interface was obtained using attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies, alongside density functional theory calculations. These reveal that the linker molecules dock the SA molecules at the surface via a 1:1 complexation interaction. Furthermore, each 1:1 complex acts as a nucleation point onto which multiple stacks of the biocide are subsequently stabilized via a combination of H-bonding and π-π stacking interactions, thus significantly enhancing SA uptake at the interface. The antimicrobial activity of these surfaces against model Gram-negative and Gram-positive bacteria represented by Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis is demonstrated by a log 6 reduction of planktonic bacterial populations and an efficient anti-biofilm activity at the surface.

15.
ACS Appl Bio Mater ; 1(5): 1294-1300, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996233

RESUMEN

Soft substrates decorated with micropillar arrays are known to be sensitive to deflection due to capillary action. In this work, we demonstrate that micropillared epoxy surfaces are sensitive to single drops of bacterial suspensions. The micropillars can show significant deformations upon evaporation, just as capillary action does in soft substrates. The phenomenon has been studied with five bacterial strains: S. epidermidis, L. sakei, P. aeruginosa, E. coli, and B. subtilis. The results reveal that only droplets containing motile microbes with flagella stimulate micropillar bending, which leads to significant distortions and pillar aggregations forming dimers, trimers, and higher order clusters. Such deformation is manifested in characteristic patterns that are left on the microarrayed surface following evaporation and can be easily identified even by the naked eye. Our findings could lay the ground for the design and fabrication of mechanically responsive substrates, sensitive to specific types of microorganisms.

16.
ACS Appl Mater Interfaces ; 9(44): 38364-38372, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29022348

RESUMEN

Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed.


Asunto(s)
Nanopartículas , Antibacterianos , Bacterias Gramnegativas , Compuestos de Amonio Cuaternario , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA