RESUMEN
This work presents an innovative approach to obtain a multifunctional hybrid material operating via combined anti-Stokes (upconversion) and Stokes (downshifting) emissions for oxygen gas sensing and related functionalities. The material is based on a Cu(I) complex exhibiting thermally activated delayed fluorescence emission (TADF) and infrared-to-visible upconverting Tm3+/Yb3+-doped NaYF4 nanoparticles supported in a polystyrene (PS) matrix. Excitation of the hybrid material at 980 nm leads to efficient transfer of Tm3+ emission in the ultraviolet/blue region to the Cu(I) complex and consequently intense green emission (560 nm) of the latter. Additionally, the green emission of the complex can also be directly generated with excitation at 360 nm. Independently of the excitation wavelength, the emission intensity is efficiently suppressed by the presence of molecular oxygen and the quenching rate is properly characterized by the Stern-Volmer plots. The results indicate that the biocompatible hybrid material can be applied as an efficient O2 sensor operating via near-infrared or ultraviolet excitation, unlike most optical oxygen sensors currently available which only work in downshifting mode.
RESUMEN
The polynuclear complex Cu4I4py4 has been largely studied in solution and in the powder form due to its interesting luminescent properties, which are largely dependent on temperature and pressure. In this work, we present the synthesis of the complex and its wet impregnation in a mesoporous silica host obtained by sol-gel methodology. For optimized loadings, the well-dispersed guest molecules exhibit strong interaction with molecular oxygen, resulting in a significant quenching of the luminescence. The process is highly reversible with a Stern-Volmer constant of Ksv = 33.8, which is the largest value found in the literature for similar complexes in the solid state, suggesting that the new material is a promising candidate for high sensitivity oxygen sensing. Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations reveal a weak intermolecular interaction between the two guest complexes in the excited state, suggesting the formation of an excited state complex (excimer). The assumption of a triplet excimer formation is confirmed by temperature- and concentration-dependent experiments, which provides a new way to explain the giant Stokes shift observed for the guest complex in different media.