Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Aging ; 10(1): 28, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879533

RESUMEN

The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.

2.
Soft Matter ; 16(23): 5478-5486, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32490505

RESUMEN

Active particle assemblies can exhibit a wide range of interesting dynamical phases depending on internal parameters such as density, adhesion strength or self-propulsion. Active self-rotations are rarely studied in this context, although they can be relevant for active matter systems, as we illustrate by analyzing the motion of Chlamydomonas reinhardtii algae under different experimental conditions. Inspired by this example, we simulate the dynamics of a system of interacting active disks endowed with active torques and self-propulsive forces. At low packing fractions, adhesion causes the formation of small rotating clusters, resembling those observed when algae are stressed. At higher densities, the model shows a jamming to unjamming transition promoted by active torques and hindered by adhesion. We also study the interplay between self-propulsion and self-rotation and derive a phase diagram. Our results yield a comprehensive picture of the dynamics of active rotators, providing useful guidance to interpret experimental results in cellular systems where rotations might play a role.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Modelos Biológicos , Movimiento (Física) , Simulación por Computador
3.
Phys Rev E ; 101(3-1): 032602, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32289917

RESUMEN

Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, has been extensively studied for topographical gradients at the subcellular scale, but can also occur in the presence of a spatially varying density of cell-sized features. Such a large-scale topotaxis has recently been observed in highly motile cells that persistently crawl within an array of obstacles with smoothly varying lattice spacing. We introduce a toy model of large-scale topotaxis, based on active Brownian particles. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles' persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive large-scale topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA