Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 52, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195581

RESUMEN

The Mediterranean Sea has been sampled irregularly by research vessels in the past, mostly by national expeditions in regional waters. To monitor the hydrographic, biogeochemical and circulation changes in the Mediterranean Sea, a systematic repeat oceanographic survey programme called Med-SHIP was recommended by the Mediterranean Science Commission (CIESM) in 2011, as part of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). Med-SHIP consists of zonal and meridional surveys with different frequencies, where comprehensive physical and biogeochemical properties are measured with the highest international standards. The first zonal survey was done in 2011 and repeated in 2018. In addition, a network of meridional (and other key) hydrographic sections were designed: the first cycle of these sections was completed in 2016, with three cruises funded by the EU project EUROFLEETS2. This paper presents the physical and chemical data of the meridional and key transects in the Western and Eastern Mediterranean Sea collected during those cruises.

2.
Mar Pollut Bull ; 197: 115747, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995430

RESUMEN

Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.


Asunto(s)
Fijación del Nitrógeno , Contaminación por Petróleo , Mar Mediterráneo , Hidrocarburos/metabolismo , Alcanos/metabolismo , Bacterias/genética , Archaea/metabolismo , Biodegradación Ambiental
3.
Mar Pollut Bull ; 146: 355-365, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31426168

RESUMEN

Human-induced eutrophication of coastal water may be a major threat to aquatic life. Here, we investigated the effects of N-rich well amelioration brines (WAB) on coastal phytoplankton population's habitat in the surface oligotrophic waters of the southeastern Mediterranean Sea (SEM). To this end, we added WAB (2 concentrations) to mesocosms (1-m3 bags) to surface SEM water during summer and winter, where changes in phytoplankton biomass, activity and diversity was monitored daily for 8 days. Our results demonstrate that WAB addition triggered a phytoplankton bloom, resulting in elevated algal biomass (maximal +780%), increased primary production rates (maximal +675%) and a decrease in eukaryotic algal α-diversity (ca. -20%). Among the species that bloomed following WAB amendments, we found the potentially toxic dinoflagellate Karlodinium venificum. This study adds valuable perspective to the effect of nutrients discharged into nutrient limited SEM coastal waters, and in particular of N-derived WAB.


Asunto(s)
Nitrógeno/metabolismo , Fitoplancton/fisiología , Agua de Mar/química , Biodiversidad , Biomasa , Clorofila A/metabolismo , Cianobacterias/fisiología , Ecosistema , Eucariontes/fisiología , Eutrofización , Mar Mediterráneo , Fitoplancton/genética , ARN Ribosómico 18S , Estaciones del Año
4.
Mar Pollut Bull ; 127: 559-567, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29475698

RESUMEN

The coastal waters of the southeastern Mediterranean-Sea (SEMS) are routinely enriched with naturally-occurring and anthropogenic land-based nutrient loads. These external inputs may affect autotrophic and heterotrophic microbial biomass and activity. Here, we conducted 13 microcosm bioassays with different additions of inorganic NO3-(N), PO4-(P) and Si(OH)4-(Si) in different seasons along the Mediterranean coast of Israel. Our results indicate that cyanobacteria are mainly N-limited, whereas N or Si (or both) limit pico-eukaryotes. Furthermore, the degree to which N affects phytoplankton depends on the ambient seawater's inorganic N and N:P characteristics. Heterotrophic bacteria displayed no response in all treatments, except when all nutrients were added simultaneously, suggesting a possible co-limitation by nutrients. These results contrast the N+P co-limitation of phytoplankton and the P-limitation of bacteria in the open waters of the SEMS. These observations enable the application for a better science-based environmental monitoring and policy implementation along the SEMS coast of Israel.


Asunto(s)
Monitoreo del Ambiente/métodos , Microbiota/efectos de los fármacos , Nitrógeno/análisis , Fósforo/análisis , Agua de Mar/microbiología , Silicatos/análisis , Procesos Autotróficos , Bioensayo , Biomasa , Cianobacterias/crecimiento & desarrollo , Procesos Heterotróficos , Israel , Mar Mediterráneo , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/química
5.
PLoS One ; 10(10): e0140690, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26474399

RESUMEN

This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world-the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Análisis Espacio-Temporal , Procesos Autotróficos , Bacterias/metabolismo , Procesos Heterotróficos , Mar Mediterráneo , Fijación del Nitrógeno , Fitoplancton/metabolismo , Agua de Mar/microbiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA