Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Heart Lung Transplant ; 43(5): 755-770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38141893

RESUMEN

BACKGROUND: Quantifying right ventricular (RV) function is important to describe the pathophysiology of in pulmonary hypertension (PH). Current phenotyping strategies in PH rely on few invasive hemodynamic parameters to quantify RV dysfunction severity. The aim of this study was to identify novel RV phenotypes using unsupervised clustering methods on advanced hemodynamic features of RV function. METHODS: Participants were identified from the University of Arizona Pulmonary Hypertension Registry (n = 190). RV-pulmonary artery coupling (Ees/Ea), RV systolic (Ees), and diastolic function (Eed) were quantified from stored RV pressure waveforms. Consensus clustering analysis with bootstrapping was used to identify the optimal clustering method. Pearson correlation analysis was used to reduce collinearity between variables. RV cluster subphenotypes were characterized using clinical data and compared to pulmonary vascular resistance (PVR) quintiles. RESULTS: Five distinct RV clusters (C1-C5) with distinct RV subphenotypes were identified using k-medoids with a Pearson distance matrix. Clusters 1 and 2 both have low diastolic stiffness (Eed) and afterload (Ea) but RV-PA coupling (Ees/Ea) is decreased in C2. Intermediate cluster (C3) has a similar Ees/Ea as C2 but with higher PA pressure and afterload. Clusters C4 and C5 have increased Eed and Ea but C5 has a significant decrease in Ees/Ea. Cardiac output was high in C3 distinct from the other clusters. In the PVR quintiles, contractility increased and stroke volume decreased as a function of increased afterload. World Symposium PH classifications were distributed across clusters and PVR quintiles. CONCLUSIONS: RV-centric phenotyping offers an opportunity for a more precise-medicine-based management approach.


Asunto(s)
Hemodinámica , Hipertensión Pulmonar , Fenotipo , Disfunción Ventricular Derecha , Función Ventricular Derecha , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/clasificación , Masculino , Femenino , Persona de Mediana Edad , Hemodinámica/fisiología , Análisis por Conglomerados , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha/fisiología , Sistema de Registros , Anciano
2.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669509

RESUMEN

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Asunto(s)
Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Canales Iónicos/biosíntesis , Mecanotransducción Celular/fisiología , Arteria Pulmonar/metabolismo , Regulación hacia Arriba/fisiología , Adulto , Anciano , Animales , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Femenino , Humanos , Hipertensión Pulmonar/patología , Indoles/farmacología , Masculino , Mecanotransducción Celular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Pirroles/farmacología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
3.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L10-L26, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553627

RESUMEN

Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel ß1 subunit (BKCaß1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaß1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.


Asunto(s)
Regulación hacia Abajo/genética , Hipertensión Pulmonar Primaria Familiar/genética , MicroARNs/genética , Canales de Potasio con Entrada de Voltaje/genética , Adolescente , Adulto , Células Cultivadas , Hipertensión Pulmonar Primaria Familiar/metabolismo , Femenino , Humanos , Masculino , Potenciales de la Membrana/genética , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , ARN Mensajero/genética , Regulación hacia Arriba/genética , Vasoconstricción/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...