Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(27): 5839-5843, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38950385

RESUMEN

Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.

2.
J Org Chem ; 89(8): 5690-5698, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38567891

RESUMEN

The facile, metal-free synthesis and characterization of three new series of triptycene-fused pyridylbenzimidazoles are reported; such compounds possess an imidazole moiety fused within the benzene rings of the trypticene and a pyridine ring installed at position 2 of the imidazole rings. The position of the nitrogen atom of the pyridyl moiety linked to position 2 of the fused benzimidazole scaffold is systematically changed from the ortho to para position. The number of substituted blades bearing the pyridyl-substituted fused benzimidazole scaffolds has been increased from one to three. Such a library of compounds allowed us to evaluate the enhancement of two main effects: tautomeric isomerism and homoconjugation. The characteristic dynamic equilibrium between different isomers induced by prototropic tautomerization was examined by 1H nuclear magnetic resonance spectroscopy. By comparison of the photophysical properties of the new compounds with those of classical planar pyridylbenzimidazoles, the presence of the homoconjugation effect between the different triptycene blades was demonstrated. Fine details of the electronic structure of the new derivatives were unraveled by a computational analysis. The novel compounds can be employed for the construction of intriguing self-assembled supramolecular architectures.

3.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986204

RESUMEN

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

4.
Org Lett ; 25(35): 6490-6494, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37638412

RESUMEN

We report the facile, metal-free convergent synthesis and the characterization of novel quinacridone dyes in which two triptycene units end-cap and sterically confine the quinacridone chromophore. A precise comparison of the confined dyes with their known homologues reveals that the reduction of π-π interactions in triptycene-fused quinacridone dyes compared to classical quinacridone results not only in an increase of solubility and processability but also in an enhancement of fluorescence quantum yield and photostability in the solid state.

5.
J Am Chem Soc ; 145(10): 5846-5854, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854068

RESUMEN

The development of a mild, atom- and step-economical catalytic strategy that effectively generates value-added molecules directly from readily available commodity chemicals is a central goal of organic synthesis. In this context, the thiol-ene click chemistry for carbon-sulfur (C-S) bond construction has found widespread applications in the synthesis of pharmaceuticals and functional materials. In contrast, the selective carbonyl thiyl radical addition to carbon-carbon multiple bonds remains underdeveloped. Herein, we report a carbonyl thiyl radical-based thioester synthesis through three-component coupling from feedstock aldehydes, alkenes, or alkynes and elemental sulfur by direct photocatalyzed hydrogen atom transfer. This method represents an orthogonal strategy to the conventional thiol-based nucleophilic substitution and exhibits a remarkably broad substrate scope ranging from simple commodity chemicals such as ethylene and acetylene to complex pharmaceutical molecules. This protocol can be easily extended to the synthesis of thiolactones, oligomer/polymers, and thioacids. Its synthetic utility has been demonstrated by a two-step synthesis of the drug esonarimod. Mechanistic studies indicate that the use of elemental sulfur to trap acyl radicals is both thermodynamically and kinetically favored, illustrating its great potential for the synthesis of sulfur-containing molecules.

6.
J Am Chem Soc ; 145(2): 991-999, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36583709

RESUMEN

Herein, we present a comprehensive study on the use of N-heterocyclic carbene (NHC)-ligated boryl radicals to enable C(sp3)-C(sp3) bond formation under visible-light irradiation via Halogen-Atom Transfer (XAT). The methodology relies on the use of an acridinium dye to generate the boron-centered radicals from the corresponding NHC-ligated boranes via single-electron transfer (SET) and deprotonation. These boryl radicals subsequently engage with alkyl halides in an XAT step, delivering the desired nucleophilic alkyl radicals. The present XAT strategy is very mild and accommodates a broad scope of alkyl halides, including medicinally relevant compounds and biologically active molecules. The key role of NHC-ligated boryl radicals in the operative reaction mechanism has been elucidated through a combination of experimental, spectroscopic, and computational studies. This methodology stands as a significant advancement in the chemistry of NHC-ligated boryl radicals, which had long been restricted to radical reductions, enabling C-C bond formation under visible-light photoredox conditions.


Asunto(s)
Halógenos , Metano , Transporte de Electrón
7.
ChemSusChem ; 15(17): e202200898, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695876

RESUMEN

The valorization of alkenoic acids possibly deriving from biomass (fumaric and citraconic acids) was carried out through conversion in important building blocks, such as γ-keto acids and succinic acid derivatives. The functionalization was carried out by addition onto the C=C double bond of radicals generated under photocatalyzed conditions from suitable hydrogen donors (mainly aldehydes) and by adopting a decatungstate salt as the photocatalyst. Syntheses were performed under batch (in a glass vessel) and flow (by using 3D-printed reactors) conditions. The design of the latter reactors allowed for an improved yield and productivity.


Asunto(s)
Aldehídos , Hidrógeno , Aldehídos/química , Biomasa , Impresión Tridimensional
9.
Chemistry ; 28(26): e202200313, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35226781

RESUMEN

With the aim of generating new, thermally inaccessible diradicals, potentially able to induce a double-strand DNA cleavage, the photochemistry of a set of chloroaryl-substituted carboxylic acids in polar media was investigated. The photoheterolytic cleavage of the Ar-Cl bond occurred in each case to form the corresponding triplet phenyl cations. Under basic conditions, the photorelease of the chloride anion was accompanied by an intramolecular electron-transfer from the carboxylate group to the aromatic radical cationic site to give a diradical species. This latter intermediate could then undergo CO2 loss in a structure-dependent fashion, according to the stability of the resulting diradical, or abstract a hydrogen atom from the medium. In aqueous environment at physiological pH (pH=7.3), both a phenyl cation and a diradical chemistry was observed. The mechanistic scenario and the role of the various intermediates (aryl cations and diradicals) involved in the process was supported by computational analysis.


Asunto(s)
Ácidos Carboxílicos , Agua , Cationes/química , ADN , Fotoquímica
10.
Photochem Photobiol Sci ; 21(5): 695-703, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34792791

RESUMEN

The catalyst-free [2 + 2] photocycloaddition between benzils and simple olefins is reported. The adoption of visible light proved essential for the transformation, as shorter wavelengths led to uncontrolled decomposition. When cyclic olefins were used, the reaction occurred smoothly to afford the expected oxetanes regio- and stereoselectively after 24 h of irradiation. In contrast, in the case of acyclic olefins, longer reaction times were typically required and small amounts (ca. 20%) of [4 + 2] photocycloadducts and by-products deriving from competitive hydrogen atom abstraction were observed. The selectivity of the transformation could be consistently improved by decreasing the reaction temperature, thus restoring the desired [2 + 2] reactivity. An overall mechanistic picture is also offered based on the chemical and photophysical quenching experiments and the stereochemical output is rationalized based on Griesbeck models.


Asunto(s)
Alquenos , Luz , Alquenos/química , Fenilglioxal/análogos & derivados , Fotoquímica , Estereoisomerismo
11.
Chem Rev ; 122(2): 1875-1924, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34355884

RESUMEN

Direct photocatalyzed hydrogen atom transfer (d-HAT) can be considered a method of choice for the elaboration of aliphatic C-H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic cleavage of such bonds in organic compounds. Selective C-H bond elaboration may be achieved by a judicious choice of the hydrogen abstractor (key parameters are the electronic character and the molecular structure), as well as reaction additives. Different are the classes of PCsHAT available, including aromatic ketones, xanthene dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin and a tris(amino)cyclopropenium radical dication. The processes (mainly C-C bond formation) are in most cases carried out under mild conditions with the help of visible light. The aim of this review is to offer a comprehensive survey of the synthetic applications of photocatalyzed d-HAT.


Asunto(s)
Hidrógeno , Porfirinas , Hidrógeno/química , Cetonas , Estructura Molecular , Porfirinas/química
12.
Chem Commun (Camb) ; 57(36): 4424-4427, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949468

RESUMEN

A photoelectrochemical strategy for the cross-dehydrogenative coupling of unactivated aliphatic hydrogen donors (e.g. alkanes) with benzothiazoles is reported. We used tetrabutylammonium decatungstate as the photocatalyst to activate strong C(sp3)-H bonds in the chosen substrates, while electrochemistry scavenged the extra electrons.

13.
Org Lett ; 23(6): 2243-2247, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33656899

RESUMEN

A versatile approach for the alkynylation of a variety of aliphatic hydrogen donors, including alkanes, is reported. We used tetrabutylammonium decatungstate as photocatalyst to generate organoradicals from C-H/Si-H bonds via hydrogen atom transfer. The latter intermediates underwent SOMOphilic alkynylation by methanesulfonyl alkynes to afford internal alkynes upon loss of a sulfonyl radical. The effect of different radicofugal groups on the reaction outcome was evaluated and rationalized via a combined experimental and computational approach.

14.
Beilstein J Org Chem ; 16: 1476-1488, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32647549

RESUMEN

Phenanthrenes and their aza-analogues have important applications in materials science and in medicine. Aim of this review is to collect recent reports describing their synthesis, which make use of radical cyclizations promoted by a visible light-triggered photocatalytic process.

15.
Science ; 369(6499): 92-96, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631892

RESUMEN

Direct activation of gaseous hydrocarbons remains a major challenge for the chemistry community. Because of the intrinsic inertness of these compounds, harsh reaction conditions are typically required to enable C(sp3)-H bond cleavage, barring potential applications in synthetic organic chemistry. Here, we report a general and mild strategy to activate C(sp3)-H bonds in methane, ethane, propane, and isobutane through hydrogen atom transfer using inexpensive decatungstate as photocatalyst at room temperature. The corresponding carbon-centered radicals can be effectively trapped by a variety of Michael acceptors, leading to the corresponding hydroalkylated adducts in good isolated yields and high selectivity (38 examples).

16.
Molecules ; 25(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354199

RESUMEN

The attribution of 1H and 13C NMR signals of a library of 5-, 6- and 7-substituted 2,2-dimethylchroman-4-one derivatives is reported. Substituent effects were interpreted in terms of the Hammett equation, showing a good correlation for carbons para- to the substituent group, not for the meta- ones. Similarly, the Lynch correlation shows the additivity of the substituent chemical shifts in the case of both H and C nuclei, again with the exception of the carbons in the meta- position. Density Functional Theory (DFT)-predicted 1H and 13C chemical shifts correspond closely with experimentally observed values, with some exceptions for C NMR data; however, the correlation is valid only for the aromatic moiety and cannot be extended to the heterocyclic ring of the chroman-4-one scaffold.


Asunto(s)
Isótopos de Carbono/análisis , Química/métodos , Cromonas/síntesis química , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Carbono/química , Cromonas/análisis , Electrones , Hidrógeno , Modelos Lineales , Distribución Normal , Programas Informáticos , Espectrofotometría
17.
ACS Catal ; 10(16): 9057-9064, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-33815891

RESUMEN

The use of high-valent antimony-oxo porphyrins as visible-light photocatalysts operating via direct hydrogen atom transfer has been demonstrated. Computational analysis indicates that the triplet excited state of these complexes shows an oxyl radical behavior, while the SbV center remains in a high-valent oxidation state, serving uniquely to carry the oxo moiety and activate the coordinated ligands. This porphyrin-based system has been exploited upon irradiation to catalyze C-H to C-C bond conversion via the addition of hydrogen donors (ethers and aldehydes) onto Michael acceptors in a redox-neutral fashion without the need of any external oxidant. Laser flash photolysis experiments confirmed that the triplet excited state of the photocatalyst triggers the desired C-H cleavage.

18.
J Am Chem Soc ; 142(1): 44-49, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31877036

RESUMEN

Decarboxylative functionalization via hydrogen atom transfer offers an attractive alternative to standard redox approaches to this important class of transformations. Herein, we report a direct decarboxylative functionalization of aliphatic carboxylic acids using N-xanthylamides. The unique reactivity of amidyl radicals in hydrogen atom transfer enables decarboxylative xanthylation under redox-neutral conditions. This platform provides expedient access to a range of derivatives through subsequent elaboration of the xanthate group.


Asunto(s)
Ácidos Carboxílicos/química , Hidrógeno/química , Descarboxilación , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
19.
J Org Chem ; 85(4): 1981-1990, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31880934

RESUMEN

A visible-light-promoted three-component isocyanide-based synthesis of iminofurans is herein reported. The reaction proved to be general in scope and proceeds through a triple domino process. Control experiments with 18O-labeled water and TEMPO provided key mechanistic insights for delineating the reactivity paradigms crucial to design efficient photoredox isocyanide-based domino transformations.

20.
Angew Chem Int Ed Engl ; 58(49): 17508-17510, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31642571

RESUMEN

The merging of a homogeneous photocatalytic system with an electrochemical cell, having exchanged electrons as the only common point, has been recently demonstrated. This combination opens unexplored pathways in synthesis and allowed net-oxidative photocatalytic processes to be realized in the absence of a chemical oxidant, including: 1) the C-H alkylation of heteroarenes and 2) the coupling of azoles with arenes in the presence of an electrogenerated photocatalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA