Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
EBioMedicine ; 99: 104947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160529

RESUMEN

BACKGROUND: Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS: Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS: We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION: Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING: German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Femenino , COVID-19/prevención & control , Citocinas/genética , Vacunación , Biología de Sistemas/métodos , ARN Mensajero , Anticuerpos Antivirales
3.
Front Immunol ; 14: 1166589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215123

RESUMEN

Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.


Asunto(s)
COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Infección Irruptiva
4.
Antibodies (Basel) ; 12(2)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092449

RESUMEN

Neuritin represents a neurotrophic factor that is not only important in neuronal development and plasticity but also impacts endothelial angiogenesis, cell migration, tumor growth and the production of antibodies by B cells. We established monoclonal mouse anti-mouse neuritin antibodies by immunizing knock-out mice with two different neuritin-derived peptides. Because neuritin is well conserved between species, these new monoclonal antibodies recognize the neuritin of a wide variety of species, including human. Moreover, they not only recognize specifically surface-bound neuritin expressed by murine follicular regulatory T cells but also the block binding of recombinant neuritin to germinal center B cells. This suggests that these newly generated tools will be of great use in studying neuritin expression and function.

5.
Nat Commun ; 13(1): 4872, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982040

RESUMEN

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
6.
Front Immunol ; 13: 863039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359969

RESUMEN

Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry. Spike-specific, isotype-switched B cells developed already during the disease phase, showed a memory phenotype and did not decrease in numbers even during late convalescence. Otherwise, no long-lasting perturbations of the immune compartment following COVID-19 clearance were observed. During convalescence anti-Spike (S1) IgG antibodies strongly decreased in all patients. We detected neutralizing antibodies against the Wuhan strain as well as the Alpha and Delta but not against the Beta, Gamma or Omicron variants for up to 7 months post COVID-19. Furthermore, correlation analysis revealed a strong association between sera anti-S1 IgG titers and their neutralization capacity against the Wuhan strain as well as Alpha and Delta. Overall, our data suggest that even 7 month after the clearance of COVID-19 many patients possess a protective layer of immunity, indicated by the persistence of Spike-specific memory B cells and by the presence of neutralizing antibodies against the Alpha and Delta variants. However, lack of neutralizing antibodies against the Beta, Gamma and Omicron variants even during the peak response is of major concern as this indicates viral evasion of the humoral immune response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Convalecencia , Humanos , Inmunidad Humoral , Inmunoglobulina G , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/genética
7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268392

RESUMEN

Reports suggest that COVID-19 vaccine effectiveness is decreasing, either due to waning immune protection, emergence of new variants of concern, or both. Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) appeared to be superior in inducing protective immunity, and large scale second booster vaccination is ongoing. However, data comparing declining immunity after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. We longitudinally monitored immunity in ChAd/ChAd (n=41) and ChAd/BNT (n=88) vaccinated individuals and assessed the impact of a second booster with BNT in both groups. The second booster greatly augmented waning anti-spike IgG but only moderately increased spike-specific CD4+ and CD8+ T cells in both groups to cell frequencies already present after the boost. More importantly, the second booster efficiently restored neutralizing antibody responses against Alpha, Beta, Gamma, and Delta, but neutralizing activity against B.1.1.529 (Omicron) stayed severely impaired. Our data suggest that inferior SARS-CoV-2 specific immune responses after homologous ChAd/ChAd vaccination can be cured by a heterologous BNT vaccination. However, prior heterologous ChAd/BNT vaccination provides no additional benefit for spike-specific T cell immunity or neutralizing Omicron after the second boost.

8.
Biochem Biophys Rep ; 28: 101163, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34765746

RESUMEN

Invariant natural killer T (iNKT) cells develop in thymus before emigrating and settling peripheral tissues and organs. In contrast to regular naïve T cells, most iNKT cells do not continuously recirculate but are rather sessile and can adopt phenotypically as well as functionally to their tissue environment. To explore this in more detail, we focused on the most widely distributed CD4+iNKT1 cells and compared the transcriptome of cells isolated from liver and spleen. Whereas there are only very few genuine differences in the transcriptomes of CD4+iNKT1 cells of these two organs, the mode of cell isolation left clear marks in the transcriptomic signature. In contrast to liver cell isolated in the cold, cells prepared by enzymatic tissue digestion upregulated quickly a series of genes known to respond to stress. Therefore, to avoid erroneous conclusions, a comparison of expression profiles must take into consideration the history of cell preparation.

10.
Nat Med ; 27(9): 1525-1529, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34262158

RESUMEN

Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Vacuna BNT162 , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , ChAdOx1 nCoV-19 , Humanos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
11.
Cell Mol Immunol ; 18(4): 936-944, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33139905

RESUMEN

Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells via surface-expressed angiotensin-converting enzyme 2 (ACE2). We used a surrogate virus neutralization test (sVNT) and SARS-CoV-2 S protein-pseudotyped vesicular stomatitis virus (VSV) vector-based neutralization assay (pVNT) to assess the degree to which serum antibodies from coronavirus disease 2019 (COVID-19) convalescent patients interfere with the binding of SARS-CoV-2 S to ACE2. Both tests revealed neutralizing anti-SARS-CoV-2 S antibodies in the sera of ~90% of mildly and 100% of severely affected COVID-19 convalescent patients. Importantly, sVNT and pVNT results correlated strongly with each other and to the levels of anti-SARS-CoV-2 S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies correlated with the duration and severity of clinical symptoms but not with patient age. Compared to pVNT, sVNT is less sophisticated and does not require any biosafety labs. Since this assay is also much faster and cheaper, sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/sangre , Línea Celular , Convalecencia , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pruebas de Neutralización/métodos
12.
Front Immunol ; 11: 575764, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193368

RESUMEN

Invariant natural killer T (iNKT) cells represent a subclass of T cells possessing a restricted repertoire of T cell receptors enabling them to recognize lipid derived ligands. iNKT cells are continuously generated in thymus and differentiate into three main subpopulations: iNKT1, iNKT2, and iNKT17 cells. We investigated the transcriptomes of these subsets comparing cells isolated from young adult (6-10 weeks old) and aged BALB/c mice (25-30 weeks of age) in order to identify genes subject to an age-related regulation of expression. These time points were selected to take into consideration the consequences of thymic involution that radically alter the existing micro-milieu. Significant differences were detected in the expression of histone genes affecting all iNKT subsets. Also the proliferative capacity of iNKT cells decreased substantially upon aging. Several genes were identified as possible candidates causing significant age-dependent changes in iNKT cell generation and/or function such as genes coding for granzyme A, ZO-1, EZH2, SOX4, IGF1 receptor, FLT4, and CD25. Moreover, we provide evidence that IL2 differentially affects homeostasis of iNKT subsets with iNKT17 cells engaging a unique mechanism to respond to IL2 by initiating a slow rate of proliferation.


Asunto(s)
Envejecimiento/inmunología , Células T Asesinas Naturales/inmunología , Timo/inmunología , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Senescencia Celular , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Inmunosenescencia , Interleucina-2/farmacología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/metabolismo , Fenotipo , Timo/efectos de los fármacos , Timo/metabolismo , Transcriptoma , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
13.
Eur J Immunol ; 50(4): 494-504, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31834938

RESUMEN

NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Receptores Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos de Diferenciación de Linfocitos T/metabolismo , Señalización del Calcio , Células Cultivadas , Citotoxicidad Inmunológica , Proteínas de Unión al ADN/genética , Interleucina-15/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Activación de Linfocitos , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Receptores Virales/genética , Factores de Transcripción/genética , Activación Transcripcional
14.
Front Immunol ; 9: 1072, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868026

RESUMEN

CD96 represents a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD96 is expressed mainly by cells of hematopoietic origin, in particular on T and NK cells. Upon interaction with CD155 present on target cells, CD96 was found to inhibit mouse NK cells, and absence of this interaction either by blocking with antibody or knockout of CD96 showed profound beneficial effects in containment of tumors and metastatic spread in murine model systems. However, our knowledge regarding CD96 functions remains fragmentary. In this review, we will discuss structural features of CD96 and their putative impact on function as well as some unresolved issues such as a potential activation that may be conferred by human but not mouse CD96. This is of importance for translation into human cancer therapy. We will also address CD96 activities in the context of the immune regulatory network that consists of CD155, CD96, CD226, and TIGIT.


Asunto(s)
Antígenos CD/inmunología , Antígenos CD/metabolismo , Inmunidad , Inmunomodulación , Animales , Presentación de Antígeno/inmunología , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Biomarcadores de Tumor , Regulación de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
15.
Front Immunol ; 9: 714, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686684

RESUMEN

Follicular helper (TFH) and regulatory (TFR) cells are critical players in managing germinal center (GC) reactions that accomplish effective humoral immune responses. Transcriptome analyses were done comparing gene regulation of TFH and TFR cells isolated from Peyer's Patches (PP) and immunized peripheral lymph nodes (pLNs) revealing many regulatory patterns common to all follicular cells. However, in contrast to TFH cells, the upregulation or downregulation of many genes was attenuated substantially in pLN TFR cells when compared to those of PP. Additionally, PP but not pLN TFR cells were largely unresponsive to IL2 and expressed Il4 as well as Il21. Together with fundamental differences in gene expression that were found between cells of both compartments this emphasizes specific adaptations of follicular T cell functions to their micro-milieu. Moreover, although GL7 expression distinguishes matured follicular T cells, GL7+ as well as GL7- cells are present in the GC.


Asunto(s)
Ganglios Linfáticos/inmunología , Ganglios Linfáticos Agregados/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Biomarcadores , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Perfilación de la Expresión Génica , Inmunofenotipificación , Activación de Linfocitos/inmunología , Ratones , Fenotipo , Transcriptoma
16.
Eur J Immunol ; 48(6): 1078-1081, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29508376

RESUMEN

Murine T cell subsets differ in their expression level of P2X7. Depending on several parameters like extracellular NAD+ , P2X7 can be ADP-ribosylated rapidly by adjacent ARTC2.2 resulting in susceptibilities to apoptosis to a varying extent. This detrimental effect can be prevented when drugs like KN-62 are present during cell preparations.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Transporte Iónico/efectos de los fármacos , Receptores Purinérgicos P2X7/metabolismo , Subgrupos de Linfocitos T/inmunología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD/metabolismo , Receptores Purinérgicos P2X7/genética
17.
Nat Immunol ; 19(9): 1037, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29449629

RESUMEN

In the version of this article initially published, a source of funding (Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.)) was not included in the Acknowledgments section. The correct statement is as follows: "Supported by Deutsche Forschungsgemeinschaft, (SFB900/B8 to C.K. and I.P.; and PR727/4-1 to I.P.), Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.) and the German Federal Ministry of Education and Research (01EO1302 to C.S.-F., C.K. and I.P.)." The error has been corrected in the HTML and PDF versions of the article.

18.
Nat Immunol ; 18(4): 393-401, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28218745

RESUMEN

To investigate how the human γδ T cell pool is shaped during ontogeny and how it is regenerated after transplantation of hematopoietic stem cells (HSCs), we applied an RNA-based next-generation sequencing approach to monitor the dynamics of the repertoires of γδ T cell antigen receptors (TCRs) before and after transplantation in a prospective cohort study. We found that repertoires of rearranged genes encoding γδ TCRs (TRG and TRD) in the peripheral blood of healthy adults were stable over time. Although a large fraction of human TRG repertoires consisted of public sequences, the TRD repertoires were private. In patients undergoing HSC transplantation, γδ T cells were quickly reconstituted; however, they had profoundly altered TCR repertoires. Notably, the clonal proliferation of individual virus-reactive γδ TCR sequences in patients with reactivation of cytomegalovirus revealed strong evidence for adaptive anti-viral γδ T cell immune responses.


Asunto(s)
Evolución Clonal , Infecciones por Citomegalovirus/inmunología , Trasplante de Células Madre Hematopoyéticas , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Evolución Clonal/genética , Evolución Clonal/inmunología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Reordenamiento Génico de Linfocito T , Supervivencia de Injerto , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Trasplante Homólogo
19.
Nat Commun ; 7: 13116, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721447

RESUMEN

Invariant natural killer T (iNKT) cells comprise a subpopulation of innate lymphocytes developing in thymus. A new model proposes subdividing murine iNKT cells into iNKT1, 2 and 17 cells. Here, we use transcriptome analyses of iNKT1, 2 and 17 subsets isolated from BALB/c and C57BL/6 thymi to identify candidate genes that may affect iNKT cell development, migration or function. We show that Fcɛr1γ is involved in generation of iNKT1 cells and that SerpinB1 modulates frequency of iNKT17 cells. Moreover, a considerable proportion of iNKT17 cells express IL-4 and IL-17 simultaneously. The results presented not only validate the usefulness of the iNKT1/2/17-concept but also provide new insights into iNKT cell biology.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células T Asesinas Naturales/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores/metabolismo , Movimiento Celular , Citocinas/metabolismo , Femenino , Pulmón/citología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/citología , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Quimiocina/metabolismo , Serpinas/deficiencia , Serpinas/metabolismo , Transducción de Señal , Timo/citología , Transcriptoma/genética
20.
J Leukoc Biol ; 100(4): 781-789, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27034402

RESUMEN

Previous studies have suggested that NK cells may limit T cell responses by their ability to eradicate dendritic cells, as demonstrated by NK cell-mediated killing of dendritic cells generated from mouse bone marrow cells or human monocytes with GM-CSF. In the present study, we demonstrated that conventional dendritic cells, generated in vitro with Flt3 ligand or from spleens, were resistant to NK cell-mediated lysis. However, upon stimulation with GM-CSF, NK cells could mediate lysis of these dendritic cells. GM-CSF-stimulated Flt3 ligand dendritic cells or splenic dendritic cells increased surface expression of costimulatory molecules and known NK cell ligands. Likewise, NK cells could target dendritic cells in vivo, which could be inhibited, in part, by anti-GM-CSF antibodies. The blocking of CD54 or CD226 inhibited NK cell-mediated cytotoxicity of the GM-CSF-stimulated Flt3 ligand conventional dendritic cells. Furthermore, the CD226+NKG2A- subset of NK cells was selectively better at targeting GM-CSF-stimulated Flt3 ligand conventional dendritic cells. However, CD155, a known ligand for CD226, could also act as an inhibitor of NK cell-mediated lysis, as dendritic cells lacking CD155 were more sensitive to NK cell-mediated lysis than wild-type dendritic cells. We hypothesize that by only permitting a subset of NK cells to target activated dendritic cells during inflammation, this would allow the immune system to balance between dendritic cells able to drive adaptive immune responses and dendritic cells targeted for elimination by NK cells to hinder, e.g., spread of infection.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Citotoxicidad Inmunológica/inmunología , Células Dendríticas/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Células Asesinas Naturales/inmunología , Animales , Células Cultivadas , Células Dendríticas/trasplante , Genes RAG-1 , Rechazo de Injerto/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Inflamación , Interleucina-18/farmacología , Proteínas de la Membrana/farmacología , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/deficiencia , Receptores Virales/deficiencia , Proteínas Recombinantes/farmacología , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...