Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 611-637, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637017

RESUMEN

Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Citocinas , Humanos , Inmunidad Innata , Macrófagos
2.
Future Microbiol ; 10(10): 1615-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26439708

RESUMEN

AIM: In most infectious disease models, it is assumed that gavage needle infection is the most reliable means of pathogen delivery to the GI tract. However, this methodology can cause esophageal tearing and induces stress in experimental animals, both of which have the potential to impact early infection and the subsequent immune response. MATERIALS & METHODS: C57BL/6 mice were orally infected with virulent Salmonella Typhimurium SL1344 either by intragastric gavage preceded by sodium bicarbonate, or by contamination of drinking water. RESULTS: We demonstrate that water contamination delivery of Salmonella is equivalent to gavage inoculation in providing a consistent model of infection. Furthermore, exposure of mice to contaminated drinking water for as little as 4 h allowed maximal mucosal and systemic infection, suggesting an abbreviated window exists for natural intestinal entry. CONCLUSION: Together, these data question the need for gavage delivery for infection with oral pathogens.


Asunto(s)
Agua Potable/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Microbiología del Agua , Animales , Modelos Animales de Enfermedad , Femenino , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Contaminación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...