Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(25): 11649-11659, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38861395

RESUMEN

Separation of Am3+ and Cm3+ is one of the most challenging problems in the back-end of the nuclear fuel cycle. In the present work, we exploited the cooperative effect of the opposite selectivity of hydrophobic branched DGA derivatives and hydrophobic N-donor heterocyclic ligands taken in two different phases to achieve improved separation behavior. A systematic study was performed using a series of DGA derivatives to understand the effect and the position of branching in the alkyl chains on the separation behavior of Am3+ and Cm3+. A separation factor (S.F.) value as high as 10 for Cm3+ over Am3+ was obtained in the case of TiBDGA (N,N,N',N'-tetra-iso-butyl diglycolamide) using SO3PhBTPhen ((phenanthroline-2,9-diyl)-1,2,4-triazine-5,5,6,6-tetrayltetrabenzenesulfonic acid) as the aqueous complexant, which is the highest reported value so far for the ligand-based separation of Am3+ and Cm3+ without involving any oxidation or reduction step. The high selectivity favoring Cm3+ ion extraction in the case of this DGA derivative is also explained with the help of computational studies.

2.
Int J Biol Macromol ; 253(Pt 1): 126574, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37648130

RESUMEN

The aim of the study was to comparatively evaluate chitosan and Cobalt incorporated chitosan (CoCH) scaffold at varying concentrations in terms of their material characteristics, cytotoxicity and cell adhesion potential. In the present study, cobalt incorporated chitosan scaffolds at varying concentrations were prepared and dried. The synthesised scaffolds were characterised using XRD, FTIR, SEM-EDX and BET which revealed amorphous, porous surface of CoCH scaffolds and FTIR analysis showed the complexation confirming the chelation of cobalt with chitosan. The experimental scaffolds proved to be non-cytotoxic when compared to chitosan scaffolds on XTT analysis. Cell-seeding assay revealed enhanced adherence of hDPSCs to CoCH scaffold at 1:1 ratio in the concentration of 100 mL of 100 µmol/L cobalt chloride solution in 100mL of 2% chitosan solution, when compared to other groups. The results highlighted that 100 µmol/L concentration of cobalt chloride when incorporated in 1:1 ratio into 2 % CH solution yields a promising porous, biocompatible scaffold with enhanced cellular adhesion for dentin-pulp regeneration.


Asunto(s)
Quitosano , Humanos , Andamios del Tejido , Pulpa Dental , Regeneración , Cobalto , Células Madre , Ingeniería de Tejidos , Diferenciación Celular
3.
Environ Res ; 218: 114985, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460074

RESUMEN

Synthesis of aluminium-based nanomaterials from aluminium-waste has received huge attention in current scientific research. Herein, an attempt was made to convert aluminium foil food container into aluminium oxyhydroxide (AlOOH) nanoparticles by a precipitation method. X-ray diffraction (XRD), spectroscopic and electron microscopic studies were employed to characterize impure AlOOH (containing sodium chloride, NaCl) and pure AlOOH samples. The band gap (Eg) of AlOOH nanoparticles was found to be 4.5 eV. The catalytic potential of AlOOH samples was evaluated using reduction of methyl orange (MO) and Eriochrome black T (EBT) dyes. Impure AlOOH nanoparticles could reduce 99.8% of MO and EBT dye within 4 min and 3 min respectively. Effect of the AlOOH dosage and NaBH4 concentration on catalytic reduction was determined. Used aluminium foil food container-derived AlOOH nanoparticles will become a low-cost and sustainable catalyst in the catalytic treatment of azo dye contaminated waters.


Asunto(s)
Aluminio , Nanopartículas , Embalaje de Alimentos , Nanopartículas/química , Colorantes/química , Compuestos Azo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA