Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Neurol ; 20(2): 67-83, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38195712

RESUMEN

Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.


Asunto(s)
Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Humanos , Inflamasomas/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Encéfalo/metabolismo
2.
J Neurochem ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36799439

RESUMEN

Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-ß (Aß) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1ß when microglia were either activated by LPS and nigericin or LPS and Aß. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aß-induced release of mature IL-1ß. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1ß in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.

3.
Alzheimers Res Ther ; 15(1): 13, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36631909

RESUMEN

BACKGROUND: Neuroinflammation constitutes a pathological hallmark of Alzheimer's disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. METHODS: Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer's Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. RESULTS: Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. CONCLUSIONS: Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein's specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research.


Asunto(s)
Enfermedad de Alzheimer , Proteína 1 Similar a Quitinasa-3 , Disfunción Cognitiva , Interleucina-6 , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/sangre , Encéfalo/patología , Proteína 1 Similar a Quitinasa-3/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Interleucina-6/sangre , Proteínas tau/líquido cefalorraquídeo
4.
Sci Rep ; 13(1): 1390, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697430

RESUMEN

Cognitive functions decline during aging. This decline could be caused by changes in dendritic spine stability and altered spine dynamics. Previously, we have shown that a low dose chronic THC treatment improves learning abilities in old whereas impairs learning abilities in young mice. The mechanism underlying this age-dependent effect is not known. Dendritic spine stability is a key for memory formation, therefore we hypothesized that THC affects spine dynamics in an age-dependent manner. We applied longitudinal 2-photon in vivo imaging to 3- and 18-month-old mice treated with 3 mg/kg/day of THC for 28 days via an osmotic pump. We imaged the same dendritic segments before, during and after the treatment and assessed changes in spine density and stability. We now show that in old mice THC improved spine stability resulting in a long-lasting increase in spine density. In contrast, in young mice THC transiently increased spine turnover and destabilized the spines.


Asunto(s)
Espinas Dendríticas , Dronabinol , Ratones , Animales , Dronabinol/farmacología , Envejecimiento , Cognición , Ratones Transgénicos
5.
Neuron ; 110(6): 1009-1022.e4, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34995486

RESUMEN

There is an urgent need to improve the understanding of neuroinflammation in Alzheimer's disease (AD). We analyzed cerebrospinal fluid inflammatory biomarker correlations to brain structural volume and longitudinal cognitive outcomes in the DELCODE study and in a validation cohort of the F.ACE Alzheimer Center Barcelona. We investigated whether respective biomarker changes are evident before onset of cognitive impairment. YKL-40; sTREM2; sAXL; sTyro3; MIF; complement factors C1q, C4, and H; ferritin; and ApoE protein were elevated in pre-dementia subjects with pathological levels of tau or other neurodegeneration markers, demonstrating tight interactions between inflammation and accumulating neurodegeneration even before onset of symptoms. Intriguingly, higher levels of ApoE and soluble TAM receptors sAXL and sTyro3 were related to larger brain structure and stable cognitive outcome at follow-up. Our findings indicate a protective mechanism relevant for intervention strategies aiming to regulate neuroinflammation in subjects with no or subjective symptoms but underlying AD pathology profile.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Humanos , Inflamación/metabolismo , Proteínas tau/líquido cefalorraquídeo
6.
Glia ; 70(1): 71-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499767

RESUMEN

The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.


Asunto(s)
Microglía , Receptores Toll-Like , Activación de Macrófagos , Microglía/metabolismo , Receptores de Cannabinoides/metabolismo , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Essays Biochem ; 65(7): 885-904, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34846519

RESUMEN

Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid ß and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.


Asunto(s)
Inflamasomas , Enfermedades Neurodegenerativas , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Inflamasomas/metabolismo , Ratones , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neurodegenerativas/metabolismo
8.
Sci Rep ; 11(1): 16828, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413398

RESUMEN

Although the cannabinoid receptor 2 (CB2R) is often thought to play a role mainly outside the brain several publications unequivocally showed the presence of CB2R on hippocampal principal neurons. Activation of CB2R produced a long-lasting membrane potential hyperpolarization, altered the input/output function of CA2/3 principal neurons and produced alterations in gamma oscillations. However, other cellular, molecular and behavioral consequences of hippocampal CB2R signaling have not been studied in detail. Here we demonstrate that the deletion of CB2 leads to a highly significant increase in hippocampal synapsin-I expression levels and particle density, as well as increased vesicular GABA transporter (vGAT) levels. This phenotype was restricted to females and not observed in males. Furthermore, we demonstrate an impairment of social memory in CB2 deficient mice. Our results thus demonstrate that the lack of CB2R leads to changes in the hippocampal synaptic landscape and reveals an important sex-specific difference in endocannabinoid signaling. This study supports a significant role of the CB2R in modulation of different types of memory despite its low expression levels in the brain and provides more insight into a sex-specific role of CB2R in synaptic architecture.


Asunto(s)
Eliminación de Gen , Hipocampo/fisiología , Memoria/fisiología , Receptor Cannabinoide CB2/genética , Conducta Social , Sinapsis/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Receptor Cannabinoide CB2/metabolismo , Caracteres Sexuales , Sinapsinas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...