Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079020

RESUMEN

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Niño , Persona de Mediana Edad , Anciano , Glioblastoma/genética , Glioblastoma/patología , Inhibidores de Puntos de Control Inmunológico , Homocigoto , Estudios Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Eliminación de Secuencia , Mutación/genética , Isocitrato Deshidrogenasa/genética
3.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37436963

RESUMEN

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurilemoma , Neuroma Acústico , Humanos , Mutación INDEL , Activación Transcripcional , Neurilemoma/genética , Neurilemoma/patología , Neuroma Acústico/patología , Mutación , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
4.
Acta Neuropathol ; 144(4): 747-765, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945463

RESUMEN

Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatosis 1 , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patología , Homocigoto , Humanos , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Eliminación de Secuencia
6.
Acta Neuropathol ; 139(6): 1071-1088, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303840

RESUMEN

Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Glioma/genética , Mutación/genética , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Niño , Preescolar , Epigénesis Genética/genética , Receptores ErbB/genética , Femenino , Glioma/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacología
7.
Cell Stem Cell ; 26(1): 27-33.e4, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866223

RESUMEN

Hepatocyte proliferation is the principal mechanism for generating new hepatocytes in liver homeostasis and regeneration. Recent studies have suggested that this ability is not equally distributed among hepatocytes but concentrated in a small subset of hepatocytes acting like stem cells, located around the central vein or distributed throughout the liver lobule and exhibiting active WNT signaling or high telomerase activity, respectively. These findings were obtained by utilizing components of these growth regulators as markers for genetic lineage tracing. Here, we used random lineage tracing to localize and quantify clonal expansion of hepatocytes in normal and injured liver. We found that modest proliferation of hepatocytes distributed throughout the lobule maintains the hepatocyte mass and that most hepatocytes proliferate to regenerate it, with diploidy providing a growth advantage over polyploidy. These results show that the ability to proliferate is broadly distributed among hepatocytes rather than limited to a rare stem cell-like population.


Asunto(s)
Regeneración Hepática , Hígado , Proliferación Celular , Hepatocitos , Homeostasis
8.
Curr Protoc Cell Biol ; 85(1): e97, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31763768

RESUMEN

Telomerase plays a critical role in cancer and aging by adding hexa-nucleotide repeats to the ends of telomeres and extending the cellular proliferative lifespan. The very low level of telomerase expression in most cell populations and the difficulty of detecting telomere elongation in single cells have limited the study of telomerase expression and function in individual cells of a heterogeneous population. The method described in this article combines single-molecule detection (RNAscope) of telomerase reverse transcriptase (TERT) with our previously described TSQ1 assay for in situ monitoring of telomere extension, thereby enabling detection of TERT expression, telomere length, and telomere elongation in single cells and providing a unique approach for studying the factors that regulate telomere elongation by telomerase. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: TSQ1 lentivirus production Basic Protocol 2: TSQ1 lentiviral infection and plating Basic Protocol 3: RNAscope analysis Basic Protocol 4: TSQ1 PNA-FISH detection.


Asunto(s)
Telomerasa/metabolismo , Telómero/fisiología , Expresión Génica , Vectores Genéticos/genética , Humanos , Lentivirus/genética , ARN/análisis , Análisis de la Célula Individual , Telomerasa/genética , Homeostasis del Telómero
9.
PLoS One ; 13(12): e0206525, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517099

RESUMEN

The telomerase enzyme enables unlimited proliferation of most human cancer cells by elongating telomeres and preventing replicative senescence. Despite the critical importance of telomerase in cancer biology, challenges detecting telomerase activity and expression in individual cells have hindered the ability to study patterns of telomerase expression and function across heterogeneous cell populations. While sensitive assays to ascertain telomerase expression and function exist, these approaches have proven difficult to implement at the single cell level. Here, we validate in situ RNAscope detection of the telomerase TERT mRNA and couple this assay with our recently described TSQ1 method for in situ detection of telomere elongation. This approach enables detection of TERT expression, telomere length, and telomere elongation within individual cells of the population. Using this assay, we show that the heterogeneous telomere elongation observed across a HeLa cell population is in part driven by variable expression of the TERT gene. Furthermore, we show that the absence of detectable telomere elongation in some TERT-positive cells is the result of inhibition by the telomeric shelterin complex. This combined assay provides a new approach for understanding the integrated expression, function, and regulation of telomerase at the single cell level.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Telomerasa/biosíntesis , Homeostasis del Telómero , Telómero/metabolismo , Células HeLa , Humanos , Telomerasa/genética , Telómero/genética
10.
Mod Pathol ; 29(9): 1012-27, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27255162

RESUMEN

Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with liposarcomatous components. EGFR amplification was heterogeneous and present only in the non-heterologous component of one tumor with liposarcomatous differentiation. The results identify novel pathways involved in the pathogenesis of malignant phyllodes tumors, which significantly increase our understanding of tumor biology and have potential clinical impact.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Perfilación de la Expresión Génica/métodos , Genes ras , Tumor Filoide/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Diferenciación Celular , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Mutación , Fenotipo , Tumor Filoide/enzimología , Tumor Filoide/patología , San Francisco , Transcriptoma , Adulto Joven
11.
Alcohol Clin Exp Res ; 34(5): 800-12, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20201926

RESUMEN

BACKGROUND: Alcohol use disorders (AUD) exhibit the properties shared by common conditions and diseases classified as genetically complex. The etiology of AUDs is heterogeneous involving mostly unknown interactions of environmental and heritable factors. A person's level of response (LR) to alcohol is inversely correlated with a family history and the development of AUDs. As an AUD endophenotype, alcohol LR is hypothesized to be less genetically complex and closer to the primary etiology of AUDs. METHODS: A genome wide association study (GWAS) was performed on subjects characterized for alcohol LR phenotypes. Gene Set Enrichment Analysis (GSEA) of the GWAS data was performed to determine whether, as a group, genes that participate in a common biological function (a gene set) demonstrate greater genetic association than would be randomly expected. RESULTS: The GSEA analysis implicated variation in neuronal signaling genes, especially glutamate signaling, as being involved in alcohol LR variability in the human population. CONCLUSIONS: These data, coupled with cell and animal model data implicating neuronal signaling in alcohol response, support the conclusion that neuronal signaling is mechanistically involved in alcohol's cellular and behavioral effects. Further, these data suggest that genetic variation in these signaling pathways contribute to human variation in alcohol response. Finally, this concordance of the cell, animal, and human findings supports neuronal signaling, particularly glutamate signaling, as a prime target for translational studies to understand and eventually modulate alcohol's effects.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Variación Genética/genética , Neuronas/fisiología , Transducción de Señal/genética , Adolescente , Adulto , Alcoholismo/genética , Alcoholismo/psicología , Femenino , Perfilación de la Expresión Génica/tendencias , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/tendencias , Humanos , Masculino , Hermanos/psicología , Encuestas y Cuestionarios , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 106(26): 10811-6, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19528663

RESUMEN

Opioids and their receptors have an important role in analgesia and alcohol and substance use disorders (ASUD). We have identified several naturally occurring amino acid changing variants of the human mu-opioid receptor (MOR), and assessed the functional consequences of these previously undescribed variants in stably expressing cell lines. Several of these variants had altered trafficking and signaling properties. We found that an L85I variant showed significant internalization in response to morphine, in contrast to the WT MOR, which did not internalize in response to morphine. Also, when L85I and WT receptor were coexpressed, WT MOR internalized with the L85I MOR, suggesting that, in the heterozygous condition, the L85I phenotype would be dominant. This finding is potentially important, because receptor internalization has been associated with development of tolerance to opiate analgesics. In contrast, an R181C variant abolished both signaling and internalization in response to saturating doses of the hydrolysis-resistant enkephalin [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO). Coexpression of the R181C and WT receptor led to independent trafficking of the 2 receptors. S42T and C192F variants showed a rightward shift in potency of both morphine and DAMGO, whereas the S147C variant displayed a subtle leftward shift in morphine potency. These data suggest that these and other such variants may have clinical relevance to opioid responsiveness to both endogenous ligands and exogenous drugs, and could influence a broad range of phenotypes, including ASUD, pain responses, and the development of tolerance to morphine.


Asunto(s)
Mutación , Receptores Opioides mu/fisiología , Sustitución de Aminoácidos , Analgésicos Opioides/farmacología , Unión Competitiva , Línea Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Encefalina Ala(2)-MeFe(4)-Gli(5)/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Variación Genética , Humanos , Inmunohistoquímica , Microscopía Confocal , Morfina/farmacología , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Tritio
13.
J Neurosci ; 25(9): 2255-66, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15745951

RESUMEN

Activation of the mesolimbic dopamine reward pathway by acute ethanol produces reinforcement and changes in gene expression that appear to be crucial to the molecular basis for adaptive behaviors and addiction. The inbred mouse strains DBA/2J and C57BL/6J exhibit contrasting acute behavioral responses to ethanol. We used oligonucleotide microarrays and bioinformatics methods to characterize patterns of gene expression in three brain regions of the mesolimbic reward pathway of these strains. Expression profiling included examination of both differences in gene expression 4 h after saline injection or acute ethanol (2 g/kg). Using a rigorous stepwise method for microarray analysis, we identified 788 genes differentially expressed in control DBA/2J versus C57BL/6J mice and 307 ethanol-regulated genes in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. There were strikingly divergent patterns of ethanol-responsive gene expression in the two strains. Ethanol-responsive genes also showed clustering at discrete chromosomal regions, suggesting local chromatin effects in regulation. Ethanol-regulated genes were generally related to neuroplasticity, but regulation of discrete functional groups and pathways was brain region specific: glucocorticoid signaling, neurogenesis, and myelination in the prefrontal cortex; neuropeptide signaling and developmental genes, including factor Bdnf, in the nucleus accumbens; and retinoic acid signaling in the ventral tegmental area. Bioinformatics analysis identified several potential candidate genes for quantitative trait loci linked to ethanol behaviors, further supporting a role for expression profiling in identifying genes for complex traits. Brain region-specific changes in signaling and neuronal plasticity may be critical components in development of lasting ethanol behavioral phenotypes such as dependence, sensitization, and craving.


Asunto(s)
Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Expresión Génica/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Western Blotting/métodos , Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Análisis por Micromatrices/métodos , Análisis Multivariante , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Sitios de Carácter Cuantitativo/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Especificidad de la Especie , Área Tegmental Ventral/metabolismo
14.
J Neurosci ; 25(3): 619-28, 2005 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-15659598

RESUMEN

Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects.


Asunto(s)
Alcoholismo/fisiopatología , Etanol/farmacología , Ibogaína/farmacología , Mesencéfalo/efectos de los fármacos , Factores de Crecimiento Nervioso/fisiología , Alcoholismo/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Dopamina/fisiología , Etanol/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Ibogaína/administración & dosificación , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Factores de Crecimiento Nervioso/biosíntesis , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Recurrencia , Autoadministración , Sustancia Negra/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
15.
J Mol Biol ; 317(2): 225-35, 2002 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-11902839

RESUMEN

Oligonucleotide arrays are a powerful technology for measuring the expression of thousands of genes simultaneously. Improvements in the sensitivity and precision of the measurements, which often pose a challenge to users, would assist the practical application of the technology. Here, we describe a new analysis algorithm for assessing changes in gene expression using oligonucleotide arrays. Changes in expression are detected in terms of the statistical significance (S-score) of change, which combines signals detected by multiple probe pairs according to an error model characteristic of oligonucleotide arrays. We show that the S-score is sensitive and reliable, enabling us to obtain more consistent results than with existing methods. Cluster analysis of S-score data of four brain regions exhibits patterns that are more distinctive because of improved data quality. In our case study of two mouse brain regions, over 200 genes were identified to have detectable changes between the ventral tegmental area and the prefrontal cortex. The genes with the most distinctive changes are found to be related to myelin or neurofilament synthesis, calcium signaling, and transcription factors. Many of these findings are in agreement with previous studies, using other techniques, such as in situ hybridization. Overall, our findings suggest that this new algorithm may have broad applicability for improving the analysis of oligonucleotide array data.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Ratones Endogámicos DBA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...