Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Res ; 72(S1): S11-S22, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294114

RESUMEN

Remote ischemic preconditioning (RIPC) represents one of the forms of innate cardioprotection. While being effective in animal models, its application in humans has not been always beneficial, which might be attributed to the presence of various comorbidities, such as hypertension, or being related to the confounding factors, such as patients' sex and age. RIPC has been shown to mediate its cardioprotective effects through the activation of Reperfusion Injury Salvage Kinase (RISK) pathway in healthy animals, however, scarce evidence supports this effect of RIPC in the hearts of spontaneously hypertensive (SHR) rats, in particular, in relationship with aging. The study aimed to investigate the effectiveness of RIPC in male SHR rats of different age and to evaluate the role of RISK pathway in the effect of RIPC on cardiac ischemic tolerance. RIPC was performed using three cycles of inflation/deflation of the pressure cuff placed on the hind limb of anesthetized rats aged three, five and eight months. Subsequently, hearts were excised, Langendorff-perfused and exposed to 30-min global ischemia and 2-h reperfusion. Infarct-sparing and antiarrhythmic effects of RIPC were observed only in three and five months-old animals but not in eight months-old rats. Beneficial effects of RIPC were associated with increased activity of RISK and decreased apoptotic signaling only in three and five months-old animals. In conclusion, RIPC showed cardioprotective effects in SHR rats that were partially age-dependent and might be attributed to the differences in the activation of RISK pathway and various aspects of ischemia/reperfusion injury in aging animals.


Asunto(s)
Hipertensión , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Humanos , Masculino , Ratas , Animales , Lactante , Infarto del Miocardio/metabolismo , Ratas Endogámicas SHR , Daño por Reperfusión Miocárdica/metabolismo , Isquemia , Hipertensión/prevención & control
2.
Physiol Res ; 72(S1): S61-S72, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294119

RESUMEN

Iron is an essential mineral participating in numerous biological processes in the organism under physiological conditions. However, it may be also involved in the pathological mechanisms activated in various cardiovascular diseases including myocardial ischemia/reperfusion (I/R) injury, due to its involvement in reactive oxygen species (ROS) production. Furthermore, iron has been reported to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". On the other hand, iron may be also involved in the adaptive processes of ischemic preconditioning (IPC). This study aimed to elucidate whether small amounts of iron may modify the cardiac response to I/R in isolated perfused rat hearts and their protection by IPC. Pretreatment of the hearts with iron nanoparticles 15 min prior to sustained ischemia (iron preconditioning, Fe-PC) did not attenuate post-I/R contractile dysfunction. Recovery of left ventricular developed pressure (LVDP) was significantly improved only in the group with combined pretreatment with iron and IPC. Similarly, the rates of contraction and relaxation [+/-(dP/dt)max] were almost completely restored in the group preconditioned with a combination of iron and IPC but not with iron alone. In addition, the severity of reperfusion arrhythmias was reduced only in the iron+IPC group. No changes in protein levels of "survival" kinases of the RISK pathway (Reperfusion Injury Salvage Kinase) were found except for reduced caspase 3 levels in both preconditioned groups. The results indicate that a failure to precondition rat hearts with iron may be associated with the absent upregulation of RISK proteins and the pro-ferroptotic effect manifested by reduced glutathione peroxidase 4 (GPX4) levels. However, combination with IPC suppressed the negative effects of iron resulting in cardioprotection.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Precondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Ratas , Animales , Masculino , Ratas Wistar , Hierro/metabolismo , Corazón , Daño por Reperfusión Miocárdica/metabolismo , Precondicionamiento Isquémico/métodos , Miocardio/metabolismo
3.
Mol Cell Biochem ; 476(8): 3079-3087, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33811579

RESUMEN

Inhibition of receptor-interacting protein kinase 1 (RIP1) has been recognized as a compelling tool for limiting necroptosis. Recent findings have indicated that RIP1 inhibitor, necrostatin-1 (Nec-1), is also able to modify heart function under non-cell death conditions. In this study, we investigated its underlying molecular mechanisms and compared with those of novel pharmacologically improved agents (Nec-1s and GSK'772) and its inactive analog (Nec-1i). Heart function was examined in Langendorff-perfused rat hearts. Certain proteins regulating myocardial contraction-relaxation cycle and oxidative stress (OS) were evaluated by immunoblotting and as the extent of lipid peroxidation, protein carbonylation and nitration, respectively. In spite of the increase of left ventricular developed pressure (LVDP) due to treatment by both Nec-1 and Nec-1i, only the former agent increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) at threonine 287 and cardiac myosin-binding protein-C (cMyBPc) at serine 282. In contrast, Nec-1s did not elicit such changes, while it also increased LVDP. GSK'772 activated CaMKIIδ-phospholamban (PLN) axis. Neither protein kinase A (PKA) nor its selected molecular targets, such as serine 16 phosphorylated PLN and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), were affected by either RIP1 inhibitor. Nec-1, like other necrostatins (Nec-1i, Nec-1s), but not GSK'772, elevated protein tyrosine nitration without affecting other markers of OS. In conclusion, this study indicated for the first time that Nec-1 may affect basal heart function by the modulation of OS and activation of some proteins of contraction-relaxation cycle.


Asunto(s)
Corazón/efectos de los fármacos , Imidazoles/farmacología , Indoles/farmacología , Contracción Miocárdica , Necrosis , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Masculino , Ratas , Ratas Wistar , Proteína Serina-Treonina Quinasas de Interacción con Receptores
4.
Physiol Res ; 68(4): 581-588, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31177799

RESUMEN

Although physical exercise is known to reduce size of infarction, incidence of ventricular arrhythmias, and to improve heart function, molecular mechanisms of this protection are not fully elucidated. We explored the hypothesis that voluntary running, similar to adaptive interventions, such as ischemic or remote preconditioning, may activate components of pro-survival (RISK) pathway and potentially modify cell proliferation. Sprague-Dawley adult male rats freely exercised for 23 days in cages equipped with running wheels, while sedentary controls were housed in standard cages. After 23 days, left ventricular (LV) myocardial tissue samples were collected for the detection of expression and activation of RISK proteins (WB). The day before, a marker of cell proliferation 5-bromo-2'-deoxyuridine (BrdU) was given to all animals to detect its incorporation into DNA of the LV cells (ELISA). Running increased phosphorylation (activation) of Akt, as well as the levels of PKC? and phospho-ERK1/2, whereas BrdU incorporation into DNA was unchanged. In contrast, exercise promoted pro-apoptotic signaling - enhanced Bax/Bcl-2 ratio and activation of GSK-3ß kinase. Results suggest that in the rat myocardium adapted to physical load, natural cardioprotective processes associated with physiological hypertrophy are stimulated, while cell proliferation is not modified. Up-regulation of pro-apoptotic markers indicates potential induction of cell death mechanisms that might lead to maladaptation in the long-term.


Asunto(s)
Proliferación Celular/fisiología , Mediadores de Inflamación/metabolismo , Miocardio/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Miocardio/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Tasa de Supervivencia/tendencias
5.
J Physiol Pharmacol ; 69(5)2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30683820

RESUMEN

Intrinsic cardioprotective mechanisms become activated in the early diabetes mellitus (DM) and this may protect the heart from ischemia/reperfusion (I/R) similarly as in case of ischemic preconditioning. However, this protection may by blunted in the presence of cardiovascular risk factors. Assuming that hypercholesterolemia (HCH) frequently accompanies DM, this study extends findings from separate models of DM and HCH by investigation the impact of HCH on DM-induced changes, including those of compensatory nature, in rat heart and its mitochondria. We used a factorial design with all combinations of treatment factors DM and HCH: control rats (C) and streptozotocin-treated rats (DM), both on standard chow (C and DM) and fed fat-cholesterol diet (HCH and DM-HCH). Isolated, Langendorff perfused hearts were subjected to 30 min global ischemia followed by reperfusion. Significantly increased levels of cholesterol in DM-HCH after I/R injury abrogated compensatory fluidization characteristic of DM mitochondria membranes. Concomitantly, the mitochondrial Mg2+-ATPase activity in DM-HCH was depressed. In comparison with DM, which showed significantly reduced size of myocardial infarction with simultaneously improved recovery of contractile function due to conditioning, DM-HCH hearts exhibited attenuated resistance to I/R injury. Taken together, cholesterol-enriched diet was associated with inflicting damage and has been implicated in the mechanisms leading to suppression of cardiac protection presented in diabetic group. Apparently, DM and HCH are factors which are not additive in their effects, therefore, caution should be exercised, when interpreting findings from studies considering these factors in isolation. Our findings suggest that this complex condition could accelerate the development of late diabetic complications.


Asunto(s)
Colesterol en la Dieta/administración & dosificación , Diabetes Mellitus Experimental/fisiopatología , Corazón/fisiología , Hipercolesterolemia/fisiopatología , Mitocondrias Cardíacas/fisiología , Daño por Reperfusión Miocárdica/fisiopatología , Adaptación Fisiológica , Animales , Masculino , Ratas Wistar
6.
Physiol Res ; 65(Suppl 5): S611-S619, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28006943

RESUMEN

A 2×2 factorial design was used to evaluate possible preservation of mitochondrial functions in two cardioprotective experimental models, remote ischemic preconditioning and streptozotocin-induced diabetes mellitus, and their interaction during ischemia/reperfusion injury (I/R) of the heart. Male Wistar rats were randomly allocated into four groups: control (C), streptozotocin-induced diabetic (DM), preconditioned (RPC) and preconditioned streptozotocin-induced diabetic (DM+RPC). RPC was conducted by 3 cycles of 5-min hind-limb ischemia and 5-min reperfusion. DM was induced by a single dose of 65 mg/kg streptozotocin. Isolated hearts were exposed to ischemia/reperfusion test according to Langendorff. Thereafter mitochondria were isolated and the mitochondrial respiration was measured. Additionally, the ATP synthase activity measurements on the same preparations were done. Animals of all groups subjected to I/R exhibited a decreased state 3 respiration with the least change noted in DM+RPC group associated with no significant changes in state 2 respiration. In RPC, DM and DM+RPC group, no significant changes in the activity of ATP synthase were observed after I/R injury. These results suggest that the endogenous protective mechanisms of RPC and DM do preserve the mitochondrial function in heart when they act in combination.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Precondicionamiento Isquémico Miocárdico/métodos , Mitocondrias Cardíacas/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Consumo de Oxígeno/fisiología , Animales , Masculino , Daño por Reperfusión Miocárdica/prevención & control , Distribución Aleatoria , Ratas , Ratas Wistar
7.
Physiol Res ; 65(6): 1045-1051, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27959577

RESUMEN

Several studies have shown that diabetes mellitus modulates heart resistance to ischemia and abrogates effectivity of cardioprotective interventions, such as ischemic preconditioning (IP). The aim of this study was to evaluate whether the effect of hyperglycemic conditions on the severity of ischemia-reperfusion (I/R) injury in preconditioned and non-preconditioned hearts (controls, C) is related to changes in osmotic activity of glucose. Experiments were performed in isolated rat hearts perfused according to Langendorff exposed to 30-min coronary occlusion/120-min reperfusion. IP was induced by two cycles of 5-min coronary occlusion/5-min reperfusion, prior to the long-term I/R. Hyperosmotic (HO) state induced by an addition of mannitol (11 mmol/l) to a standard Krebs-Henseleit perfusion medium significantly decreased the size of infarction and also suppressed a release of heart fatty acid binding protein (h-FABP - biomarker of cell injury) from the non-IP hearts nearly to 50 %, in comparison with normoosmotic (NO) mannitol-free perfusion. However, IP in HO conditions significantly increased the size of infarction and tended to elevate the release of h-FABP to the effluent from the heart. The results indicate that HO environment plays a cardioprotective role in the ischemic myocardium. On the other hand, increased osmolarity, similar to that in the hyperglycemic conditions, may play a pivotal role in a failure of IP to induce cardioprotection in the diabetic myocardium.


Asunto(s)
Corazón/fisiopatología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Concentración Osmolar , Animales , Microambiente Celular , Circulación Coronaria , Solución Hipertónica de Glucosa/farmacología , Hiperglucemia/fisiopatología , Técnicas In Vitro , Masculino , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Wistar
8.
Physiol Res ; 65 Suppl 1: S101-7, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27643931

RESUMEN

Quercetin, a polyphenolic compound present in various types of food, has been shown to exert beneficial effects in different cardiac as well as non-cardiac ischemia/reperfusion (I/R) models in adult animals. However, there is no evidence about the effects of quercetin on I/R injury in non-mature animals, despite the fact that efficiency of some interventions against I/R is age-dependent. This study was aimed to investigate the effects of chronic quercetin treatment on I/R injury in juvenile and adult rat hearts. Juvenile (4-week-old) as well as adult (12-week-old) rats were treated with quercetin (20 mg/kg/day) for 4 weeks, hearts were excised and exposed to 25-min global ischemia followed by 40-min reperfusion. Functional parameters of hearts and occurrence of reperfusion arrhythmias were registered to assess the cardiac function. Our results have shown that quercetin improved post-ischemic recovery of LVDP, as well as recovery of markers of contraction and relaxation, +(dP/dt)max and -(dP/dt)max, respectively, in juvenile hearts, but not in adult hearts. Quercetin had no impact on incidence as well as duration of reperfusion arrhythmias in animals of both ages. We conclude that the age of rats plays an important role in heart response to quercetin treatment in the particular dose and duration of the treatment. Therefore, the age of the treated subjects should be taken into consideration when choosing the dose of quercetin and duration of its application in prevention and/or treatment of cardiovascular diseases.


Asunto(s)
Antioxidantes/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Quercetina/uso terapéutico , Factores de Edad , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Técnicas In Vitro , Masculino , Daño por Reperfusión Miocárdica/complicaciones , Ratas Wistar
9.
Physiol Res ; 65 Suppl 1: S11-28, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27643933

RESUMEN

Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H(2)) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H(2) rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H(2) reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H(2) may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention.


Asunto(s)
Hidrógeno/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Enfermedad/etiología , Humanos , Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo
10.
Physiol Res ; 65 Suppl 1: S119-27, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27643934

RESUMEN

Pharmacological preconditioning by diazoxide and a model of experimental streptozotocin-induced acute diabetes mellitus (STZ-DM) provided similar levels of cardioprotection assessed as limiting myocardial infarct size. The aim was to explore the possibility of existence of another in vitro mechanism, which could be contributory to cardioprotection mediated by diazoxide treatment. Mitochondrial membrane fluidity and ATP synthase activity in isolated heart mitochondria were determined under the influence of two factors, STZ-DM condition and treatment with diazoxide. Both factors independently increased the ATP synthase activity (p<0.05), as no interaction effect was observed upon the combination of STZ-DM with diazoxide. On the other hand, the mitochondrial membrane fluidity was significantly increased by STZ-DM only; no significant main effect for diazoxide was found. Based on the results from measurements of enzyme kinetics, we assume a direct interaction of diazoxide with the molecule of ATP synthase stimulated its activity by noncompetitive activation. Our present work revealed, for the first time, that cardioprotection induced by diazoxide may not be caused exclusively by mitochondrial K(ATP) opening, but presumably also by a direct interaction of diazoxide with ATP synthase, although the mechanisms for achieving this activation cannot be fully delineated.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Diazóxido/uso terapéutico , Cardiopatías/prevención & control , Membranas Mitocondriales/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Diazóxido/farmacología , Masculino , Fluidez de la Membrana/efectos de los fármacos , Ratas Wistar , Succinato Deshidrogenasa/antagonistas & inhibidores
11.
Physiol Res ; 65 Suppl 1: S55-64, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27643940

RESUMEN

Remote ischemic preconditioning (RIPC) is a novel strategy of protection against ischemia-reperfusion (IR) injury in the heart (and/or other organs) by brief episodes of non-lethal IR in a distant organ/tissue. Importantly, RIPC can be induced noninvasively by limitation of blood flow in the extremity implying the applicability of this method in clinical situations. RIPC (and its delayed phase) is a form of relatively short-term adaptation to ischemia, similar to ischemic PC, and likely they both share triggering mechanisms, whereas mediators and end-effectors may differ. It is hypothesized that communication between the signals triggered in the remote organs and protection in the target organ may be mediated through substances released from the preconditioned organ and transported via the circulation (humoral pathways), by neural pathways and/or via systemic anti-inflammatory and antiapoptotic response to short ischemic bouts. Identification of molecules involved in RIPC cascades may have therapeutic and diagnostic implications in the management of myocardial ischemia. Elucidation of the mechanisms of endogenous cardioprotection triggered in the remote organ could lead to the development of diverse pharmacological RIPC mimetics. In the present article, the authors provide a short overview of RIPC-induced protection, proposed underlying mechanisms and factors modulating RIPC as a promising cardioprotective strategy.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Humanos
12.
Physiol Res ; 64(Suppl 5): S617-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26674282

RESUMEN

Acute streptozotocin diabetes mellitus (DM) as well as remote ischemic preconditioning (RPC) has shown a favorable effect on the postischemic-reperfusion function of the myocardium. Cardioprotective mechanisms offered by these experimental models involve the mitochondria with the changes in functional properties of membrane as the end-effector. The aim was to find out whether separate effects of RPC and DM would stimulate the mechanisms of cardioprotection to a maximal level or whether RPC and DM conditions would cooperate in stimulation of cardioprotection. Experiments were performed on male Wistar rats divided into groups: control, DM, RPC and DM treated by RPC (RPC+DM). RPC protocol of 3 cycles of 5-min hind limb ischemia followed by 5-min reperfusion was used. Ischemic-reperfusion injury was induced by 30-min ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Mitochondria were isolated by differential centrifugation, infarct size assessed by staining with 1 % 2,3,5-triphenyltetrazolium chloride, mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ(9) and CoQ(10) with HPLC. Results revealed that RPC as well as DM decreased the infarct size and preserved mitochondrial function by increasing the mitochondrial membrane fluidity. Both used models separately offered a sufficient protection against ischemic-reperfusion injury without an additive effect of their combination.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Miembro Posterior/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Adaptación Fisiológica , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Masculino , Fluidez de la Membrana , Mitocondrias Cardíacas/patología , Membranas Mitocondriales/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Wistar , Flujo Sanguíneo Regional , Estreptozocina , Factores de Tiempo
13.
Physiol Res ; 64(Suppl 5): S685-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26674286

RESUMEN

Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.


Asunto(s)
Envejecimiento/metabolismo , Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Adaptación Fisiológica , Factores de Edad , Envejecimiento/patología , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Circulación Coronaria , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Preparación de Corazón Aislado , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Función Ventricular Izquierda , Presión Ventricular
14.
Physiol Res ; 64(5): 633-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25804103

RESUMEN

The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non-preconditioned isolated rat hearts perfused with Krebs-Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia-reperfusion. Ischemic preconditioning (IP) was induced by two 5-min cycles of coronary occlusion followed by 5-min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and after 30-min global ischemia and 40-min reperfusion. In "normoglycemic" conditions (NG), IP significantly increased P-Akt at the end of long-term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non-preconditioned hearts. On the contrary, under HG conditions, P-Akt tended to decline in IP-hearts after long-term ischemia, and it was significantly higher after reperfusion than in non-preconditioned controls. No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions. It seems that high glucose may influence IP-induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions.


Asunto(s)
Hiperglucemia/metabolismo , Hiperglucemia/terapia , Precondicionamiento Isquémico Miocárdico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Glucemia/metabolismo , Precondicionamiento Isquémico Miocárdico/métodos , Masculino , Ratas , Ratas Wistar , Insuficiencia del Tratamiento
15.
Physiol Res ; 63(5): 577-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24908083

RESUMEN

The aim of our study was to characterize resistance to ischemia/reperfusion (I/R) injury in Langendorff-perfused rat hearts and effectivity of ischemic preconditioning (PC) under condition of simulated acute hyperglycemia (SAHG) by perfusion of the hearts with Krebs-Henseleit (KH) solution with elevated glucose concentration (22 mmol/l). I/R injury was induced by 30-min coronary occlusion followed by 120-min reperfusion and PC by two cycles of 5-min occlusion/5-min reperfusion, prior to I/R. The severity of I/R injury was characterized by determination of the size of infarction (IS, expressed in % of area at risk size) and the amount of heart-type fatty acid binding protein (h-FABP, a marker of cell injury) released from the hearts to the effluent. Significantly smaller IS (8.8+/-1 %) and lower total amount of released h-FABP (1808+/-660 pmol) in PC group compared with IS 17.1+/-1.2 % (p<0.01) and amount of h-FABP (8803+/-2415 pmol, p<0.05) in the non-PC control hearts perfused with standard KH solution (glucose 11 mmol/l) confirmed protective effects of PC. In contrast, in SAHG groups, PC enhanced IS (21.4+/-2.2 vs. 14.3+/-1.3 %, p<0.05) and increased total amount of h-FABP (5541+/-229 vs. 3458+/-283 pmol, p<0.05) compared with respective non-PC controls. Results suggest that PC has negative effect on resistance of the hearts to I/R injury under conditions of elevated glucose in vitro.


Asunto(s)
Hiperglucemia/complicaciones , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/etiología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Unión a Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Índice de Severidad de la Enfermedad , Factores de Tiempo , Función Ventricular Izquierda , Presión Ventricular
16.
Physiol Res ; 63(Suppl 4): S469-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25669678

RESUMEN

UNLABELLED: Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. ASSESSMENTS: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ(9) and CoQ(10) with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Mitocondrias Cardíacas/metabolismo , Animales , Membrana Celular/metabolismo , Transporte de Electrón , Extremidades/irrigación sanguínea , Masculino , Fosforilación Oxidativa , Ratas Wistar
17.
Physiol Res ; 63(Suppl 4): S601-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25669691

RESUMEN

Several pre-clinical and clinical studies have demonstrated zoledronic acid (Zol), which regulates the mevalonate pathway, has efficient anti-cancer effects. Zol can also induce autophagy. The aim of this study is to add new understanding to the mechanism of autophagy induction by Zol. LC3B-II, the marker for autophagy was increased by Zol treatment in breast cancer cells. Autophagosomes induced by Zol were visualized and quantified in both transient (pDendra2-hLC3) and stable MCF-7-GFP-LC3 cell lines. Acidic vesicular organelles were quantified using acridine orange. Zol induced a dose and time dependent autophagy. Treatment of Zol increased oxidative stress in MCF-7 cells, which was reversed by GGOH or anti-oxidants. On the other hand, treatment with GGOH or anti-oxidants resulted in decreased levels of LC3B-II. Further, the induced autophagy was irreversible, as the washout of Zol after 2 h or 24 h resulted in similar levels of autophagy, as induced by continuous treatment after 72 h. Thus, it can be summarized that Zol can induce a dose dependent but irreversible autophagy, by its effect on the mevalonate pathway and oxidative stress. This study adds to the understanding of the mechanism of action of Zol, and that it can induce autophagy at clinically relevant shorter exposure times in cancer cells.


Asunto(s)
Autofagia/efectos de los fármacos , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Difosfonatos/uso terapéutico , Imidazoles/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Conservadores de la Densidad Ósea/farmacología , Neoplasias de la Mama/metabolismo , Difosfonatos/farmacología , Humanos , Imidazoles/farmacología , Células MCF-7 , Ácido Mevalónico/metabolismo , Ácido Zoledrónico
18.
Physiol Res ; 62(Suppl 1): S151-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24329695

RESUMEN

UNLABELLED: Genes encoding enzymes involved in fatty acids (FA) and glucose oxidation are transcriptionally regulated by peroxisome proliferator-activated receptors (PPAR), members of the nuclear receptor superfamily. Under conditions associated with O(2) deficiency, PPAR-alpha modulates substrate switch (between FA and glucose) aimed at the adequate energy production to maintain basic cardiac function. Both, positive and negative effects of PPAR-alpha activation on myocardial ischemia/reperfusion (I/R) injury have been reported. Moreover, the role of PPAR-mediated metabolic shifts in cardioprotective mechanisms of preconditioning (PC) is relatively less investigated. We explored the effects of PPAR-alpha upregulation mimicking a delayed "second window" of PC on I/R injury in the rat heart and potential downstream mechanisms involved. Pretreatment of rats with PPAR-alpha agonist WY-14643 (WY, 1 mg/kg, i.p.) 24 h prior to I/R reduced post-ischemic stunning, arrhythmias and the extent of lethal injury (infarct size) and apoptosis (caspase-3 expression) in isolated hearts exposed to 30-min global ischemia and 2-h reperfusion. Protection was associated with remarkably increased expression of PPAR-alpha target genes promoting FA utilization (medium-chain acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase-4 and carnitine palmitoyltransferase I) and reduced expression of glucose transporter GLUT-4 responsible for glucose transport and metabolism. In addition, enhanced Akt phosphorylation and protein levels of eNOS, in conjunction with blunting of cardioprotection by NOS inhibitor L-NAME, were observed in the WY-treated hearts. CONCLUSIONS: upregulation of PPAR-alpha target metabolic genes involved in FA oxidation may underlie a delayed phase PC-like protection in the rat heart. Potential non-genomic effects of PPAR-alpha-mediated cardioprotection may involve activation of prosurvival PI3K/Akt pathway and its downstream targets such as eNOS and subsequently reduced apoptosis.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , PPAR alfa/metabolismo , Pirimidinas/uso terapéutico , Animales , Masculino , Ratas , Ratas Wistar , Recuperación de la Función , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos
19.
Physiol Res ; 62(5): 577-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24020817

RESUMEN

Hypolipidemic compound pirinixic acid (WY-14643, WY) is known to exert pleiotropic (other than primary) effects, such as activation of peroxisome proliferator-activated receptors (PPAR-alpha), transcription factors regulating different cardiac functions. Their role in ischemia-reperfusion (I/R) injury and cardioprotection is less clear, although protective effects of PPAR agonists have been documented. This study was designed to explore the effects of WY on the I/R injury in the rat heart and potential mechanisms involved, including mitochondrial K(ATP) channels (mitoK(ATP)) opening and production of reactive oxygen species (ROS). Langendorff-perfused hearts of rats intragastrally treated with WY (3 mg/kg/day) for 5 days and of control animals were subjected to 30-min global ischemia and 2-h reperfusion with or without 15-min perfusion with mitoK(ATP) blocker 5-hydroxydecanoate (5-HD) prior to I/R. Evaluation of the infarct size (IS, TTC staining) served as the main end-point of protection. Lipid peroxidation (a marker of ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD), whereas protein expression of endothelial NO synthase was analysed by Western blotting. A 2-fold increase in the cardiac protein levels of eNOS after treatment with WY was accompanied by lower post-I/R levels of CD compared with those in the hearts of untreated controls, although WY itself enhanced ROS generation prior to ischemia. IS was reduced by 47 % in the hearts of WY-treated rats (P<0.05), and this effect was reversed by 5-HD. Results suggest that PPAR-alpha activation may confer protection against lethal I/R injury in the rat heart that involves up-regulation of eNOS, mitoK(ATP) opening and reduced oxidative stress during I/R.


Asunto(s)
Cardiotónicos/farmacología , Hipolipemiantes/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Citoprotección , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , Perfusión , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Función Ventricular Izquierda
20.
Physiol Res ; 61(Suppl 2): S1-10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23130893

RESUMEN

Risk factors (RF) of cardiovascular diseases associated with modern lifestyle, such as stress, chronically increased blood pressure, hyperglycemia and dyslipidemia have a negative impact on the heart exposed to ischemia: they may facilitate its lethal injury (myocardial infarction) and occurrence of sudden death due to ventricular arrhythmias. On the other hand, some stressful stimuli related to RF including reactive oxygen species, transient episodes of ischemia (hypoxia), high glucose and other may play a dual role in the pathogenesis of ischemia/reperfusion (I/R) injury (IRI). Besides their deleterious effects, these factors may trigger adaptive processes in the heart resulting in greater resistance against IRI, which is also a characteristic feature of the female myocardium. However, sensitivity to ischemia is increasing with age in both genders. Current research indicates that comorbidity related to lifestyle may impair the cardiac response to acute ischemia not only by interference with pathophysiological mechanisms of IRI per se, but via suppression of intrinsic protective mechanisms in the heart and its ability to tolerate the ischemic challenges, although the role of RF has not been unequivocally proven. Moreover, even pathologically altered myocardium need not completely lose its adaptive potential. In addition, increased ischemic tolerance can be induced by the pleiotropic (independent of the primary) effects of some hypolipidemic and antidiabetic drugs, even in the diseased myocardium. This review addresses the issue of the impact of RF on cellular cardioprotective mechanisms and the possibilities to restore adaptive potential in subjects challenged with several RF. Reactivation of adaptive processes in the myocardium taking into consideration gender and age can contribute to optimalization of antiischemic therapy.


Asunto(s)
Isquemia Miocárdica/fisiopatología , Miocardio/patología , Daño por Reperfusión/fisiopatología , Femenino , Humanos , Precondicionamiento Isquémico Miocárdico , Estilo de Vida , Isquemia Miocárdica/epidemiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...