Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Bioallied Sci ; 16(Suppl 1): S93-S96, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595485

RESUMEN

Objective: This systematic review examines the efficacy and biocompatibility of orthodontic clear aligner tooth aligners constructed from polyethylene terephthalate glycol (PeT-G), polypropylene (PP), polycarbonate (PC), thermoplastic polyurethanes (TPUs), and ethylene-vinyl acetate (EVA). Materials and Methods: To find relevant papers published through September 2021, PubMed was searched extensively. Randomized clinical trials (RCTs) and observational studies assessing the effectiveness and biocompatibility of the aligner materials were included. Data were extracted independently, and the quality of included research was appraised using relevant procedures. The research variability necessitated a narrative synthesis. Results: Five studies were included for comparison. All materials were biocompatible; however, PeT-G and EVA aligners caused the least tissue irritation. Patients preferred TPU aligners for initial comfort and PeT-G aligners for transparency and endurance. Conclusion: Biocompatible PeT-G, PP, PC, TPU, and EVA tooth aligners fix malocclusions. Aligner materials should be chosen based on patient preferences, treatment goals, and material qualities. For stronger proof, a longer-term study is needed.

2.
J Pharm Bioallied Sci ; 16(Suppl 1): S186-S188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595548

RESUMEN

Background: Nanosized antibacterial agents can be used to prevent biofilm buildup on orthodontic appliances and auxiliaries, limiting microbial adherence and preventing caries. Nanoparticles (NPs) can enhance the antibacterial properties of orthodontic materials due to their smaller particle size and larger surface area. Materials and Methods: The study's material analysis was divided into four groups, numbered I through IV, using Transbond XT Primer as a control and modifying group I by adding various antibacterial agents. 98.1 g of mutans-sanguis agar was dissolved in 1,000 ml of warm distilled water and autoclaved for 15 minutes at 121°C and 15 lb pressure. 176 disk specimens of 6 mm in diameter were created, sterilized in an autoclave, and heated to 60°C in a hot air oven for 1 hour. Ten milliliters of primer containing different antimicrobial agents was applied to the sterilized disks. Four petri plates were used for each concentration, with 16 disks in each group. 44 petri plates in all were utilized. Results: The orthodontic primer modified by the addition of antibacterial agents showed a significantly increased antimicrobial activity, and nanobenzalkonium chloride (BAC) at 5% concentration showed the highest antimicrobial efficacy among all groups. Nanohydroxyapatite showed the least. Conclusion: Within the confines of the current investigation, it was determined that the addition of antibacterial agents had significantly higher antimicrobial activity and BAC at 5% concentration had the highest antimicrobial efficacy of all the groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA