Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Obstet Gynecol MFM ; 5(6): 100945, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990181

RESUMEN

BACKGROUND: Preeclampsia, a new-onset hypertension with end-organ damage in pregnancy, is associated with maternal death and morbidity, low birthweight, and B cells producing agonistic autoantibodies to the angiotensin II type 1 receptor. Angiotensin II type 1 receptor agonistic autoantibodies are produced during pregnancy and after delivery and are in the fetal circulation of women with preeclampsia. Angiotensin II type 1 receptor agonistic autoantibodies are shown to contribute to endothelial dysfunction, renal dysfunction, hypertension, fetal growth restriction, and chronic inflammation in women with preeclampsia. The reduced uterine perfusion pressure rat model of preeclampsia exhibits these features. In addition, we have shown that the administration of a 'n7AAc', which blocks the actions of the angiotensin II type 1 receptor autoantibodies, improves preeclamptic features in the rat with reduced uterine perfusion pressure. However, the effect of a 'n7AAc' on the long-term health of the offspring of rats with reduced uterine perfusion pressure is unknown. OBJECTIVE: This study aimed to test the hypothesis that inhibition of angiotensin II type 1 receptor autoantibodies during pregnancy will improve offspring birthweight and prevent increased cardiovascular risk in offspring in adulthood. STUDY DESIGN: To test our hypothesis, a 'n7AAc' (24 µg/d) or vehicle (saline) was given on gestation day 14 via miniosmotic pumps to sham-operated (sham) and Sprague-Dawley rat dams with reduced uterine perfusion pressure. Dams were allowed to deliver naturally, and pup weights were recorded within 12 hours after birth. Pups were aged to 16 weeks, at which time mean arterial pressure was measured and whole blood was collected to measure immune cells by flow cytometry, cytokines by enzyme-linked immunosorbent assay, and angiotensin II type 1 receptor autoantibodies by bioassay. A 2-way analysis of variance with the Bonferroni multiple comparison posthoc test was used for statistical analysis. RESULTS: There was no significant change in offspring birthweight of 'n7AAc'-treated male (5.63±0.09 g) or female (5.66±0.14 g) offspring from reduced uterine perfusion pressure dams compared with vehicle male (5.51±0.17 g) or female (5.74±0.13 g) offspring from reduced uterine perfusion pressure dams. In addition, 'n7AAc' treatment did not affect the birthweight of sham male (5.83±0.11 g) or female (5.64±0.12) offspring compared with vehicle sham male (5.811±0.15 g) or female (5.40±0.24 g) offspring. At adulthood, mean arterial pressure was unchanged in 'n7AAc' treated-male (133±2 mm Hg) and female (127±3 mm Hg) offspring from reduced uterine perfusion pressure dams compared with vehicle male (142±3 mm Hg) and female (133±5 mm Hg) offspring from reduced uterine perfusion pressure dams, the 'n7AAc'-treated sham male (133±3 mm Hg) and female (135±3 mm Hg) offspring, and vehicle sham male (138±4 mm Hg) and female (130±5 mm Hg) offspring. The circulating angiotensin II type 1 receptor autoantibodies were increased in vehicle male (10±2 ΔBPM) and female (14±2 ΔBPM) offspring from reduced uterine perfusion pressure dams and 'n7AAc'-treated male (11±2 ΔBPM) and female (11±2 ΔBPM) offspring from reduced uterine perfusion pressure dams compared with vehicle sham male (1±1 ΔBPM) and female (-1±1 ΔBPM) offspring and 'n7AAc'-treated sham male (-2±2 ΔBPM) and female (-2±2 ΔBPM) offspring. CONCLUSION: Our findings indicated that perinatal 7-amino acid sequence peptide treatment does not negatively impact offspring survival or weight at birth. Perinatal 'n7AAc' treatment did not prevent increased cardiovascular risk in offspring, but it also did not cause an increased cardiovascular risk in offspring with reduced uterine perfusion pressure compared with controls. Furthermore, perinatal 'n7AAc' treatment did not affect endogenous immunologic programming as observed by no change in circulating angiotensin II type 1 receptor autoantibodies in either sex of adult offspring from reduced uterine perfusion pressure dams.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Ratas , Femenino , Masculino , Animales , Humanos , Presión Sanguínea , Preeclampsia/prevención & control , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Autoanticuerpos/farmacología , Peso al Nacer , Perfusión
2.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R670-R681, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121142

RESUMEN

Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.


Asunto(s)
MicroARNs , Preeclampsia , Animales , Femenino , Humanos , Embarazo , Ratas , Aminoácidos/metabolismo , Autoanticuerpos/metabolismo , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Epítopos/metabolismo , Desarrollo Fetal , Isquemia , MicroARNs/metabolismo , Péptidos/farmacología , Placenta/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Arteria Uterina
3.
Clin Sci (Lond) ; 135(19): 2307-2327, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34643675

RESUMEN

Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.


Asunto(s)
Enfermedades Cardiovasculares/genética , Epigénesis Genética , Desarrollo Fetal , Retardo del Crecimiento Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Preeclampsia/genética , Animales , Presión Sanguínea/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Placenta/fisiopatología , Placentación/genética , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Pronóstico , Medición de Riesgo , Factores de Riesgo
4.
Am J Physiol Heart Circ Physiol ; 320(5): H1923-H1934, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739156

RESUMEN

Stimulation of soluble guanylate cyclase (sGC) improves fetal growth at gestational day 20 in the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia suggesting a role for sGC in the etiology of intrauterine growth restriction (IUGR). This study tested the hypothesis that stimulation of sGC until birth attenuates asymmetric IUGR mitigating increased cardiovascular risk in offspring. Sham or RUPP surgery was performed at gestational day 14 (G14); vehicle or the sGC stimulator Riociguat (10 mg/kg/day sc) was administered G14 until birth. Birth weight was reduced in offspring from RUPP [intrauterine growth restricted (IUGR)], sGC RUPP (sGC IUGR), and sGC Sham (sGC Control) compared with Sham (Control). Crown circumference was maintained, but abdominal circumference was reduced in IUGR and sGC IUGR compared with Control indicative of asymmetrical growth. Gestational length was prolonged in sGC RUPP, and survival at birth was reduced in sGC IUGR. Probability of survival to postnatal day 2 was also significantly reduced in IUGR and sGC IUGR versus Control and in sGC IUGR versus IUGR. At 4 mo of age, blood pressure was increased in male IUGR and sGC IUGR but not male sGC Control born with symmetrical IUGR. Global longitudinal strain was increased and stroke volume was decreased in male IUGR and sGC IUGR compared with Control. Thus late gestational stimulation of sGC does not mitigate asymmetric IUGR or increased cardiovascular risk in male sGC IUGR. Furthermore, late gestational stimulation of sGC is associated with symmetrical growth restriction in sGC Control implicating contraindications in normal pregnancy.NEW & NOTEWORTHY The importance of the soluble guanylate cyclase-cGMP pathway in a rat model of placental ischemia differs during critical windows of development, implicating other factors may be critical mediators of impaired fetal growth in the final stages of gestation. Moreover, increased blood pressure at 4 mo of age in male intrauterine growth restriction offspring is associated with impaired cardiac function including an increase in global longitudinal strain in conjunction with a decrease in stroke volume, ejection fraction, and cardiac output.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Placenta/irrigación sanguínea , Insuficiencia Placentaria/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Presión Sanguínea/fisiología , Activadores de Enzimas/farmacología , Femenino , Retardo del Crecimiento Fetal/etiología , Embarazo , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Resistencia Vascular/fisiología
5.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R149-R161, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175587

RESUMEN

Placental ischemia in preeclampsia (PE) results in hypertension and intrauterine growth restriction (IUGR). Stimulation of soluble guanylate cyclase (sGC) reduces blood pressure in the clinically relevant reduced uterine perfusion pressure (RUPP) rat model of PE, implicating involvement in RUPP-induced hypertension. However, the contribution of sGC in the development of IUGR in PE is not known. Thus, this study demonstrated the efficacy of Riociguat, an sGC stimulator, in IUGR reversion in the RUPP rat model of PE, and tested the hypothesis that improvement in fetal weight occurs in association with improvement in placental perfusion, placental morphology, and placental nutrient transport protein expression. Sham or RUPP surgery was performed at gestational day 14 (G14) with administration of vehicle (Sham or RUPP) or the sGC stimulator (Riociguat, 10 mg/kg/day sc; sGC-treated) until G20. Fetal weight was reduced (P = 0.004) at G20 in RUPP but not in sGC-treated RUPP compared with Sham, the control group. At G20, uterine artery resistance index (UARI) was increased (P = 0.010) in RUPP, indicating poor placental perfusion; proportional junctional zone surface area was elevated (P = 0.035), indicating impaired placental development. These effects were ameliorated in sGC-treated RUPP. Placental protein expression of nutrient transporter heart fatty acid-binding protein (hFABP) was increased (P = 0.008) in RUPP but not in sGC-treated RUPP, suggesting a compensatory mechanism to maintain normal neurodevelopment. Yet, UARI (P < 0.001), proportional junctional zone surface area (P = 0.013), and placental hFABP protein expression (P = 0.008) were increased in sGC-treated Sham, suggesting a potential adverse effect of Riociguat. Collectively, these results suggest sGC contributes to IUGR in PE.


Asunto(s)
Isquemia , Enfermedades Placentarias , Pirazoles/farmacología , Pirimidinas/farmacología , Guanilil Ciclasa Soluble/metabolismo , Animales , Femenino , Retardo del Crecimiento Fetal , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Preeclampsia/fisiopatología , Embarazo , Ratas , Ratas Sprague-Dawley , Arteria Uterina/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...