Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 34(6): 2111-9, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501352

RESUMEN

Homeostatic plasticity functions within the nervous system to maintain normal neural functions, such as neurotransmission, within predefined optimal ranges. The defined output of these neuronal processes is referred to as the set point, which is the value that the homeostatic system defends against fluctuations. Currently, it is unknown how stable homeostatic set points are within the nervous system. In the present study we used the CM9 neuromuscular junctions (NMJs) in the adult Drosophila to investigate the stability of the set point of synaptic homeostasis across the lifespan of the fly. At the fly NMJ, it is believed that the depolarization of the muscle by neurotransmitter during an action potential, represented by the EPSP, is a homeostatic set point that is precisely maintained via changes in synaptic vesicle release. We find that the amplitude of the EPSP abruptly increases during middle age and that this enhanced EPSP is maintained into late life, consistent with an age-dependent change to the homeostatic set point of the synapse during middle age. In support of this, comparison of the homeostatic response at the young versus the old synapse shows that the magnitude of the homeostatic response at the older synapse is significantly larger than the response at the young NMJ, appropriate for a synapse at which the set point has been increased. Our data demonstrate that the amplitude of the EPSP at the Drosophila NMJ increases during aging and that the homeostatic signaling system adjusts its response to accommodate the new set point.


Asunto(s)
Envejecimiento/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Homeostasis/fisiología , Sinapsis/fisiología , Animales , Drosophila , Femenino , Unión Neuromuscular/fisiología , Plasticidad Neuronal/fisiología
2.
Aging Cell ; 11(3): 418-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22268717

RESUMEN

Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not because of the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild-type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Unión Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Dieta , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Complejo Dinactina , Proteínas Asociadas a Microtúbulos/genética , Análisis de Supervivencia , Vesículas Sinápticas/genética
3.
J Neurosci ; 29(26): 8539-50, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571145

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are concentrated at neuromuscular synapses in many species, including Drosophila. We have established the physiological and patterning functions of HSPGs at the Drosophila neuromuscular junction by using mutations that block heparan sulfate synthesis or sulfation to compromise HSPG function. The mutant animals showed defects in synaptic physiology and morphology suggesting that HSPGs function both presynaptically and postsynaptically; these defects could be rescued by appropriate transgene expression. Of particular interest were selective disruptions of mitochondrial localization, abnormal distributions of Golgi and endoplasmic reticulum markers in the muscle, and a markedly increased level of stimulus-dependent endocytosis in the motoneuron. Our data support the emerging view that HSPG functions are not limited to the cell surface and matrix environments, but also affect a diverse set of cellular processes including membrane trafficking and organelle distributions.


Asunto(s)
Movimiento Celular/fisiología , Heparitina Sulfato/biosíntesis , Mitocondrias/metabolismo , Unión Neuromuscular/fisiología , Neuronas/clasificación , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Comunicación Celular/fisiología , Movimiento Celular/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitosis/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteoglicanos de Heparán Sulfato/biosíntesis , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/genética , Peroxidasa de Rábano Silvestre/metabolismo , Larva , Locomoción/fisiología , Microscopía Electrónica de Transmisión/métodos , Mitocondrias/ultraestructura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Mutación , Unión Neuromuscular/citología , Unión Neuromuscular/ultraestructura
4.
Curr Biol ; 15(9): 833-8, 2005 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-15886101

RESUMEN

Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.


Asunto(s)
Axones/metabolismo , Movimiento Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Glicoproteínas de Membrana/metabolismo , Morfogénesis , Proteoglicanos/metabolismo , Vías Visuales/fisiología , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Electrofisiología , Regulación del Desarrollo de la Expresión Génica , Heparitina Sulfato/metabolismo , Inmunohistoquímica , Microscopía Confocal , Microscopía Electrónica de Rastreo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestructura , Retina/metabolismo , Sindecanos , Vías Visuales/metabolismo
5.
J Neurobiol ; 55(2): 134-50, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12672013

RESUMEN

Transforming growth factor-betas (TGF-beta) comprise a superfamily of secreted proteins with diverse functions in patterning and cell division control. TGF-beta signaling has been implicated in synapse assembly and plasticity in both vertebrate and invertebrate systems. Recently, wishful thinking, a Drosophila gene that encodes a protein related to BMP type II receptors, has been shown to be required for the normal function and development of the neuromuscular junction (NMJ). These findings suggest that a TGF-beta-related ligand activates a signaling cascade involving type I and II receptors and the Smad family of transcription factors to orchestrate the assembly of the NMJ. Here we demonstrate that the TGF-beta type I receptor Saxophone and the downstream transcription factor Mothers against dpp (Mad) are essential for the normal structural and functional development of the Drosophila NMJ, a synapse that displays activity-dependent plasticity.


Asunto(s)
Receptores de Activinas Tipo I/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Unión Neuromuscular/fisiología , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Sinapsis/metabolismo , Factores de Transcripción/fisiología , Receptores de Activinas Tipo I/deficiencia , Receptores de Activinas Tipo I/genética , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Mutación/fisiología , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Plasticidad Neuronal/fisiología , Especificidad de Órganos/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/genética , Sinapsis/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA