Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704377

RESUMEN

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteínas de Unión a Poli(A) , Animales , Proteínas de Unión a Poli(A)/genética , Neuronas , Encéfalo , Mamíferos
2.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002329

RESUMEN

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Motivos de Unión al ARN/genética , Unión Proteica , Factores Reguladores Miogénicos/metabolismo
3.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914531

RESUMEN

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Asunto(s)
Poli A , Poliadenilación , Regiones no Traducidas 3' , Humanos , Poli A/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Zinc/metabolismo
4.
Nucleic Acids Res ; 50(19): e111, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36018788

RESUMEN

Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.


Asunto(s)
Algoritmos , Proteínas de Unión al ARN , Sitios de Unión , Proteínas de Unión al ARN/metabolismo , Motivos de Nucleótidos , ARN/química , Unión Proteica
5.
PLoS Biol ; 20(4): e3001615, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476669

RESUMEN

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Asunto(s)
Placenta , Proteínas de Unión al ARN , Empalme Alternativo/genética , Animales , Euterios/genética , Femenino , Placenta/metabolismo , Embarazo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
Genome Biol ; 21(1): 195, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762776

RESUMEN

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Epigénesis Genética , Femenino , Glioblastoma/etiología , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Masculino , Ratones , Neurogénesis , Fenotipo , Pronóstico , Estados Unidos/epidemiología
7.
Nucleic Acids Res ; 47(6): 2856-2870, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698747

RESUMEN

Stress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA. RNA-seq of neural cells depleted of ARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 is embryonic lethal in mice, and knockdown in zebrafish causes neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induces changes in the pattern of alternatively spliced genes, many of which were lost when ARGLU1 was absent. Importantly, the genes found to be alternatively spliced in response to glucocorticoid treatment were distinct from those under transcriptional control by GR, suggesting an additional mechanism of glucocorticoid action is present in neural cells. Our results thus show that ARGLU1 is a novel factor for embryonic development that modulates basal transcription and alternative splicing in neural cells with consequences for glucocorticoid signaling.


Asunto(s)
Desarrollo Embrionario , Glucocorticoides/farmacología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Empalme del ARN/genética , Activación Transcripcional/genética , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Glucocorticoides/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transactivadores/fisiología , Activación Transcripcional/efectos de los fármacos , Pez Cebra
8.
Elife ; 72018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575518

RESUMEN

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Células Germinativas/metabolismo , Interferencia de ARN , Animales , Cromatina/metabolismo , Redes Reguladoras de Genes
9.
ACS Chem Biol ; 13(10): 3000-3010, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30141626

RESUMEN

Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.


Asunto(s)
Modelos Animales de Enfermedad , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Isoquinolinas/farmacología , Isoquinolinas/toxicidad , Atrofias Olivopontocerebelosas/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Pez Cebra/anomalías , Animales , Atrofia , Cerebelo/patología , Regulación hacia Abajo , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Técnicas de Silenciamiento del Gen , Humanos , Isoquinolinas/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Atrofias Olivopontocerebelosas/inducido químicamente , Atrofias Olivopontocerebelosas/patología , Fenotipo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Curvaturas de la Columna Vertebral/inducido químicamente , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba
10.
Cancer Cell ; 32(1): 101-114.e8, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28697339

RESUMEN

Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/fisiología , Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Methods ; 126: 18-28, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28651966

RESUMEN

RNA-binding proteins recognize RNA sequences and structures, but there is currently no systematic and accurate method to derive large (>12base) motifs de novo that reflect a combination of intrinsic preference to both sequence and structure. To address this absence, we introduce RNAcompete-S, which couples a single-step competitive binding reaction with an excess of random RNA 40-mers to a custom computational pipeline for interrogation of the bound RNA sequences and derivation of SSMs (Sequence and Structure Models). RNAcompete-S confirms that HuR, QKI, and SRSF1 prefer binding sites that are single stranded, and recapitulates known 8-10bp sequence and structure preferences for Vts1p and RBMY. We also derive an 18-base long SSM for Drosophila SLBP, which to our knowledge has not been previously determined by selections from pure random sequence, and accurately discriminates human replication-dependent histone mRNAs. Thus, RNAcompete-S enables accurate identification of large, intrinsic sequence-structure specificities with a uniform assay.


Asunto(s)
Secuencia de Bases/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Unión al ARN/genética , Humanos , Proteínas de Unión al ARN/química , Análisis de Secuencia de ARN/métodos
12.
Nucleic Acids Res ; 45(11): 6761-6774, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28379442

RESUMEN

RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping.


Asunto(s)
Proteínas de Unión al ARN/fisiología , Autoantígenos , Secuencia de Bases , Sitios de Unión , Exones , Células HEK293 , Humanos , Unión Proteica , Empalme del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Dedos de Zinc
13.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157508

RESUMEN

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Asunto(s)
Empalme Alternativo , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética
14.
Methods ; 118-119: 3-15, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27956239

RESUMEN

RNA-binding proteins (RBPs) participate in diverse cellular processes and have important roles in human development and disease. The human genome, and that of many other eukaryotes, encodes hundreds of RBPs that contain canonical sequence-specific RNA-binding domains (RBDs) as well as numerous other unconventional RNA binding proteins (ucRBPs). ucRBPs physically associate with RNA but lack common RBDs. The degree to which these proteins bind RNA, in a sequence specific manner, is unknown. Here, we provide a detailed description of both the laboratory and data processing methods for RNAcompete, a method we have previously used to analyze the RNA binding preferences of hundreds of RBD-containing RBPs, from diverse eukaryotes. We also determine the RNA-binding preferences for two human ucRBPs, NUDT21 and CNBP, and use this analysis to exemplify the RNAcompete pipeline. The results of our RNAcompete experiments are consistent with independent RNA-binding data for these proteins and demonstrate the utility of RNAcompete for analyzing the growing repertoire of ucRBPs.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Análisis por Micromatrices/métodos , Proteínas de Unión al ARN/genética , ARN/química , Animales , Secuencia de Bases , Sitios de Unión , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Clonación Molecular , Cartilla de ADN/química , Cartilla de ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Unión Proteica , Dominios Proteicos , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
15.
Elife ; 52016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27502555

RESUMEN

In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Planarias/genética , Planarias/fisiología , Proteínas de Unión al ARN/metabolismo , Células Madre/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Proteínas de Unión al ARN/genética
16.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26527002

RESUMEN

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/metabolismo
17.
Genome Biol ; 16: 94, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25962635

RESUMEN

BACKGROUND: Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. RESULTS: Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. CONCLUSIONS: Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , ARN Mensajero Almacenado/genética , Proteínas de Unión al ARN/genética , Animales , Sitios de Unión , Neoplasias Encefálicas/diagnóstico , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Represión Epigenética , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Mutación , Proteínas Nucleares , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/metabolismo , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Cell ; 54(6): 946-959, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24910101

RESUMEN

Alternative splicing is important for the development and function of the nervous system, but little is known about the differences in alternative splicing between distinct types of neurons. Furthermore, the factors that control cell-type-specific splicing and the physiological roles of these alternative isoforms are unclear. By monitoring alternative splicing at single-cell resolution in Caenorhabditis elegans, we demonstrate that splicing patterns in different neurons are often distinct and highly regulated. We identify two conserved RNA-binding proteins, UNC-75/CELF and EXC-7/Hu/ELAV, which regulate overlapping networks of splicing events in GABAergic and cholinergic neurons. We use the UNC-75 exon network to discover regulators of synaptic transmission and to identify unique roles for isoforms of UNC-64/Syntaxin, a protein required for synaptic vesicle fusion. Our results indicate that combinatorial regulation of alternative splicing in distinct neurons provides a mechanism to specialize metazoan nervous systems.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Neuronas Colinérgicas/citología , Neuronas GABAérgicas/citología , Proteínas de Unión al ARN/fisiología , Transmisión Sináptica/genética , Sintaxina 1/genética , Animales , Neuronas Colinérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Mutación , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Isoformas de Proteínas/genética , Proteínas de Unión al ARN/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
19.
Genome Res ; 24(5): 775-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24663241

RESUMEN

It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO-mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Mensajero/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/genética , Secuencia de Bases , Sitios de Unión , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética
20.
Proc Natl Acad Sci U S A ; 111(7): 2542-7, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550280

RESUMEN

The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins ß-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-µM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.


Asunto(s)
Bacteriófago M13/genética , Dominios PDZ/genética , Dominios PDZ/fisiología , Biblioteca de Péptidos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Biología Computacional , Cartilla de ADN/genética , Humanos , Análisis por Micromatrices
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA