Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 2(2): 734-745, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36133250

RESUMEN

Highly dispersed aggregation-free gold nanoparticles intercalated into the walls of mesoporous silica (AuMS) were synthesized using thioether-functionalized silica as a nanozyme, which exhibited an excellent peroxidase mimic activity. The AuMS material was characterized via XRD, N2 adsorption-desorption, FESEM, SEM-EDS particle mapping, TEM, and XPS. The peroxidase-like activity of the AuMS material was studied thoroughly, and the effect of pH and temperature was evaluated. The reproducibility of the peroxidase mimic activity and long-term stability of the AuMS catalyst were also studied. Furthermore, the AuMS catalyst was successfully utilized for the detection and quantification of dopamine, an important neurotransmitter, colorimetrically with a linear range of 10-80 µM and a limit of detection (LOD) value of 1.28 nM. The determination of dopamine concentration in commercially available dopamine hydrochloride injection showed high accuracy, good reproducibility, and high selectivity in the presence of uric acid, ascorbic acid, glucose, tryptophan, phenylalanine, and tyrosine.

2.
Folia Microbiol (Praha) ; 63(6): 763-772, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29855854

RESUMEN

Microbial biofilms are factions of surface-colonized cells encompassed in a matrix of extracellular polymeric substances. Profound application of antibiotics in order to treat infections due to microbial biofilm has led to the emergence of several drug-resistant microbial strains. In this context, a novel type of 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) was synthesized, and efforts were given to test its antimicrobial and antibiofilm activities against Pseudomonas aeruginosa, a widely used biofilm-forming pathogenic organism. The synthesized TzAgNPs showed considerable antimicrobial activity wherein the MIC value of TzAgNPs was found at 40 µg/mL against Pseudomonas aeruginosa. Antibiofilm activity of TzAgNPs was also tested against Pseudomonas aeruginosa by carrying out an array of experiments like microscopic observation, crystal violet assay, and protein count using the sub-MIC doses of TzAgNPs. Since TzAgNPs showed efficient antibiofilm activity, thus, in the present study, efforts were put together to investigate the underlying cause of biofilm attenuation of Pseudomonas aeruginosa by using TzAgNPs. To this end, we discerned that the sub-MIC doses of TzAgNPs increased ROS level considerably in the bacterial cell. The result showed that the ROS level and microbial biofilm formation are inversely proportional. Thus, the attenuation in microbial biofilm could be attributed to the accumulation of ROS level. Furthermore, it was also duly noted that microorganisms upon treatment with TzAgNPs exhibited considerable diminution in virulence factors (protease and pyocyanin) in contrast to the control where the organisms were not treated with TzAgNPs. Thus, the results indicated that TzAgNPs exhibit considerable reduction in the development of biofilms and spreading of virulence factors. Taken together, all the results indicated that TzAgNPs could be deemed to be a promising agent for the prevention of microbial biofilm development that might assist to fight against infections linked to biofilm.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Nanopartículas del Metal , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Especies Reactivas de Oxígeno/metabolismo , Plata , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...