Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(5)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37539722

RESUMEN

"Gating" is a widely observed phenomenon in biochemistry that describes the transition between the activated (or open) and deactivated (or closed) states of an ion-channel, which makes transport through that channel highly selective. In general, gating is a mechanism that imposes an additional restriction on a transport, as the process ends only when the "gate" is open and continues otherwise. When diffusion occurs in the presence of a constant bias to a gated target, i.e., to a target that switches between an open and a closed state, the dynamics essentially slow down compared to ungated drift-diffusion, resulting in an increase in the mean completion time, ⟨TG⟩ > ⟨T⟩, where T denotes the random time of transport and G indicates gating. In this work, we utilize stochastic resetting as an external protocol to counterbalance the delay due to gating. We consider a particle in the positive semi-infinite space that undergoes drift-diffusion in the presence of a stochastically gated target at the origin and is moreover subjected to rate-limiting resetting dynamics. Calculating the minimal mean completion time ⟨Tr⋆G⟩ rendered by an optimal resetting rate r⋆ for this exactly solvable system, we construct a phase diagram that owns three distinct phases: (i) where resetting can make gated drift-diffusion faster even compared to the original ungated process, ⟨Tr⋆G⟩<⟨T⟩<⟨TG⟩, (ii) where resetting still expedites gated drift-diffusion but not beyond the original ungated process, ⟨T⟩≤⟨Tr⋆G⟩<⟨TG⟩, and (iii) where resetting fails to expedite gated drift-diffusion, ⟨T⟩<⟨TG⟩≤⟨Tr⋆G⟩. We also highlight various non-trivial behaviors of the completion time as the resetting rate, gating parameters, and geometry of the set-up are carefully ramified. Gated drift-diffusion aptly models various stochastic processes such as chemical reactions that exclusively take place in certain activated states of the reactants. Our work predicts the conditions under which stochastic resetting can act as a useful strategy to enhance the rate of such processes without compromising their selectivity.

2.
Phys Rev E ; 106(3-1): 034133, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266865

RESUMEN

We explore the effect of stochastic resetting on the first-passage properties of the Feller process. The Feller process can be envisioned as space-dependent diffusion, with diffusion coefficient D(x)=x, in a potential U(x)=x(x/2-θ) that owns a minimum at θ. This restricts the process to the positive side of the origin and therefore, Feller diffusion can successfully model a vast array of phenomena in biological and social sciences, where realization of negative values is forbidden. In our analytically tractable model system, a particle that undergoes Feller diffusion is subject to Poissonian resetting, i.e., taken back to its initial position at a constant rate r, after random time epochs. We addressed the two distinct cases that arise when the relative position of the absorbing boundary (x_{a}) with respect to the initial position of the particle (x_{0}) differ, i.e., for (a) x_{0}θ_{c}, where θ_{c} is a critical value of θ that increases when x_{0} is moved away from the origin. Our study opens up the possibility of a series of subsequent works with more case-specific models of Feller diffusion with resetting.

3.
J Chem Phys ; 154(17): 171103, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241053

RESUMEN

A dynamical process that takes a random time to complete, e.g., a chemical reaction, may either be accelerated or hindered due to resetting. Tuning system parameters, such as temperature, viscosity, or concentration, can invert the effect of resetting on the mean completion time of the process, which leads to a resetting transition. Although the resetting transition has been recently studied for diffusion in a handful of model potentials, it is yet unknown whether the results follow any universality in terms of well-defined physical parameters. To bridge this gap, we propose a general framework that reveals that the resetting transition is governed by an interplay between the thermal and potential energy. This result is illustrated for different classes of potentials that are used to model a wide variety of stochastic processes with numerous applications.

4.
J Chem Phys ; 153(23): 234904, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33353343

RESUMEN

We explore the effect of stochastic resetting on the first-passage properties of space-dependent diffusion in the presence of a constant bias. In our analytically tractable model system, a particle diffusing in a linear potential U(x) ∝ µ|x| with a spatially varying diffusion coefficient D(x) = D0|x| undergoes stochastic resetting, i.e., returns to its initial position x0 at random intervals of time, with a constant rate r. Considering an absorbing boundary placed at xa < x0, we first derive an exact expression of the survival probability of the diffusing particle in the Laplace space and then explore its first-passage to the origin as a limiting case of that general result. In the limit xa → 0, we derive an exact analytic expression for the first-passage time distribution of the underlying process. Once resetting is introduced, the system is observed to exhibit a series of dynamical transitions in terms of a sole parameter, ν≔(1+µD0 -1), that captures the interplay of the drift and the diffusion. Constructing a full phase diagram in terms of ν, we show that for ν < 0, i.e., when the potential is strongly repulsive, the particle can never reach the origin. In contrast, for weakly repulsive or attractive potential (ν > 0), it eventually reaches the origin. Resetting accelerates such first-passage when ν < 3 but hinders its completion for ν > 3. A resetting transition is therefore observed at ν = 3, and we provide a comprehensive analysis of the same. The present study paves the way for an array of theoretical and experimental works that combine stochastic resetting with inhomogeneous diffusion in a conservative force field.

5.
J Chem Phys ; 152(23): 234110, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32571031

RESUMEN

We study the effect of resetting on diffusion in a logarithmic potential. In this model, a particle diffusing in a potential U(x) = U0 log |x| is reset, i.e., taken back to its initial position, with a constant rate r. We show that this analytically tractable model system exhibits a series of transitions as a function of a single parameter, ßU0, the ratio of the strength of the potential to the thermal energy. For ßU0 < -1, the potential is strongly repulsive, preventing the particle from reaching the origin. Resetting then generates a non-equilibrium steady state, which is exactly characterized and thoroughly analyzed. In contrast, for ßU0 > -1, the potential is either weakly repulsive or attractive, and the diffusing particle eventually reaches the origin. In this case, we provide a closed-form expression for the subsequent first-passage time distribution and show that a resetting transition occurs at ßU0 = 5. Namely, we find that resetting can expedite arrival to the origin when -1 < ßU0 < 5, but not when ßU0 > 5. The results presented herein generalize the results for simple diffusion with resetting-a widely applicable model that is obtained from ours by setting U0 = 0. Extending to general potential strengths, our work opens the door to theoretical and experimental investigation of a plethora of problems that bring together resetting and diffusion in logarithmic potential.

6.
Phys Rev E ; 96(5-1): 052120, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347722

RESUMEN

Periodic driving is used to operate machines that go from standard macroscopic engines to small nonequilibrium microsized systems. Two classes of such systems are small heat engines driven by periodic temperature variations, and molecular pumps driven by external stimuli. Well-known results that are valid for nonequilibrium steady states of systems driven by fixed thermodynamic forces, instead of an external periodic driving, have been generalized to periodically driven heat engines only recently. These results include a general expression for entropy production in terms of currents and affinities, and symmetry relations for the Onsager coefficients from linear-response theory. For nonequilibrium steady states, the Onsager reciprocity relations can be obtained from the more general fluctuation theorem for the currents. We prove a fluctuation theorem for the currents for periodically driven systems. We show that this fluctuation theorem implies a fluctuation dissipation relation, symmetry relations for Onsager coefficients, and further relations for nonlinear response coefficients. The setup in this paper is more general than previous studies, i.e., our results are valid for both heat engines and molecular pumps. The external protocol is assumed to be stochastic in our framework, which leads to a particularly convenient way to treat periodically driven systems.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26651661

RESUMEN

In this paper we have presented the heat exchange between the two fermionic thermal reservoirs which are connected by a fermionic system. We have calculated the heat flux using solution of the c-number Langevin equation for the system. Assuming small temperature difference between the baths we have defined the thermal conductivity for the process. It first increases as a nonlinear function of average temperature of the baths to a critical value then decreases to a very low value such that the heat flux almost becomes zero. There is a critical temperature for the fermionic case at which the thermal conductivity is maximum for the given coupling strength and the width of the frequency distribution of bath modes. The critical temperature grows if these quantities become larger. It is a sharp contrast to the Bosonic case where the thermal conductivity monotonically increases to the limiting value. The change of the conductivity with increase in width of the frequency distribution of the bath modes is significant at the low temperature regime for the fermionic case. It is highly contrasting to the Bosonic case where the signature of the enhancement is very prominent at high temperature limit. We have also observed that thermal conductivity monotonically increases as a function of damping strength to the limiting value at the asymptotic limit. There is a crossover between the high and the low temperature results in the variation of the thermal conductivity as a function of the damping strength for the fermionic case. Thus it is apparent here that even at relatively high temperature, the fermionic bath may be an effective one for the strong coupling between system and reservoir. Another interesting observation is that at the low temperature limit, the temperature dependence of the heat flux is the same as the Stefan-Boltzmann law. This is similar to the bosonic case.

8.
J Chem Phys ; 142(15): 154122, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25903881

RESUMEN

In this article, we have explored the resonance behavior of a particle in the presence of a time dependent magnetic field (TDMF). The particle is bound in a harmonic potential well. Based on the Hamiltonian description of the system in terms of action and angle variables, we have derived the resonance condition for the applied TDMF along z-direction which is valid for arbitrary frequencies along x and y directions of the two dimensional harmonic oscillator. We have also derived resonance condition for the applied magnetic field which is lying in a plane. Finally, we have explored resonance condition for the isotropic magnetic field. To check the validity of the theoretical calculation, we have solved equations of motion numerically for the parameter sets which satisfy the derived resonance condition. The numerical experiment fully agrees with the theoretically derived resonance conditions.

9.
Artículo en Inglés | MEDLINE | ID: mdl-25314391

RESUMEN

In this article we have studied Shannon entropic nonequilibrium temperature (NET) extensively for a system which is coupled to a thermal bath that may be Markovian or non-Markovian in nature. Using the phase-space distribution function, i.e., the solution of the generalized Fokker Planck equation, we have calculated the entropy production, NET, and their bounds. Other thermodynamic properties like internal energy of the system, heat, and work, etc. are also measured to study their relations with NET. The present study reveals that the heat flux is proportional to the difference between the temperature of the thermal bath and the nonequilibrium temperature of the system. It also reveals that heat capacity at nonequilibrium state is independent of both NET and time. Furthermore, we have demonstrated the time variations of the above-mentioned and related quantities to differentiate between the equilibration processes for the coupling of the system with the Markovian and the non-Markovian thermal baths, respectively. It implies that in contrast to the Markovian case, a certain time is required to develop maximum interaction between the system and the non-Markovian thermal bath (NMTB). It also implies that longer relaxation time is needed for a NMTB compared to a Markovian one. Quasidynamical behavior of the NMTB introduces an oscillation in the variation of properties with time. Finally, we have demonstrated how the nonequilibrium state is affected by the memory time of the thermal bath.


Asunto(s)
Entropía , Temperatura , Procesos Estocásticos
10.
J Chem Phys ; 140(20): 204105, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24880264

RESUMEN

In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

11.
Artículo en Inglés | MEDLINE | ID: mdl-24730830

RESUMEN

In this paper, we have studied the Shannon "entropic" nonequilibrium temperature (NET) of quantum Brownian systems. The Brownian particle is attached to either a bosonic or fermionic bath. Based on the Fokker-Planck description of the c-number quantum Langevin equation, we have calculated entropy production, NET, and their bounds. Entropy production (EP), the upper bound of entropy production (UBEP), and the deviation of the UBEP from EP monotonically decrease as functions of time to equilibrium value for both of the thermal baths. The deviation decreases with increase of temperature of the bosonic thermal bath, but it becomes larger as the temperature of the fermionic bath grows. We also observe that nonequilibrium temperature and its lower bound monotonically increase to equilibrium value with the progression of time. But their difference as a function of time shows an optimum behavior in most cases. Finally, we have observed that at long time, the entropic temperature (for a bosonic thermal bath) first increases nonlinearly as a function of thermodynamic temperature (TT) and, if the TT is appreciably large, then it grows linearly. But for the fermionic thermal bath, the entropic temperature decreases monotonically as a nonlinear function of thermodynamic temperature to zero value.

12.
J Chem Phys ; 138(24): 244110, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23822230

RESUMEN

We have studied the effect of time dependent magnetic field on the barrier crossing dynamics of a charged particle. An interplay of the magnetic field induced electric field and the applied field reveals several interesting features. For slowly oscillating field the barrier crossing rate increases remarkably particularly at large amplitude of the field. For appreciably large frequency a generically distinct phenomenon appears by virtue of parametric resonance manifested in multiple peaks appearing in the variation of the mean first passage time as a function of the amplitude. The parametric resonance is more robust against the variation of amplitude of the oscillating field compared to the case of variation of frequency. The barrier crossing time of a particle can be tuned para-metrically by appropriate choice of amplitude and frequency of the oscillating magnetic field.


Asunto(s)
Campos Magnéticos , Termodinámica , Factores de Tiempo
13.
Chaos ; 23(4): 043121, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24387560

RESUMEN

In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

14.
J Chem Phys ; 135(3): 034107, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21786987

RESUMEN

We perform ab initio calculation using quantum chemistry package (MOLPRO) on the excited states of Na(3) cluster and present the adiabatic PESs for the electronic states 2(2)E' and 1(2)A(1)', and the non-adiabatic coupling (NAC) terms among those states. Since the ab initio calculated NAC elements for the states 2(2)E' and 1(2)A(1)' demonstrate the numerical validity of so called "Curl Condition," such states closely form a sub-Hilbert space. For this subspace, we employ the NAC terms to solve the "adiabatic-diabatic transformation (ADT)" equations to obtain the functional form of the transformation angles and pave the way to construct the continuous and single valued diabatic potential energy surface matrix by exploiting the existing first principle based theoretical means on beyond Born-Oppenheimer treatment. Nuclear dynamics has been carried out on those diabatic surfaces to reproduce the experimental spectrum for system B of Na(3) cluster and thereby, to explore the numerical validity of the theoretical development on beyond Born-Oppenheimer approach for adiabatic to diabatic transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...