Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37642942

RESUMEN

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neuroinflamatorias , Animales , Ratones , Humanos , Oncogenes , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Línea Celular , Modelos Animales de Enfermedad , Ratones Transgénicos
2.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37436942

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Ratones , Animales , Neuronas , Sistema de Señalización de MAP Quinasas , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Antineoplásicos/efectos adversos , Quinasas Quinasa Quinasa PAM
3.
iScience ; 26(3): 106152, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36879821

RESUMEN

In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.

4.
Front Aging ; 4: 1058968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756194

RESUMEN

Neurodegenerative tauopathies, including Alzheimer's disease, are pathologically defined by the presence of aggregated forms of tau protein in brains of affected individuals. Previous studies report that the negative effects of pathogenic tau on the actin cytoskeleton and microtubules cause a toxic destabilization of the lamin nucleoskeleton and formation of nuclear invaginations and blebs. Based on the known function of the nucleus as a mechanosensor, as well as the high incidence of nuclear pleomorphism in human Alzheimer's disease and related tauopathies, we investigated the effects of pathogenic tau on nuclear tension. We first find that tau-dependent nuclear envelope invagination and relocalization of LInker of Nucleoskeleton and Cytoskeleton (LINC) complex components are conserved in a newly-developed neuroblastoma cell line that features doxycycline-inducible expression of a tau mutant associated with autosomal dominant frontotemporal dementia. We next determine that a Förster resonance energy transfer (FRET)-based sensor of nuclear tension responds to cytoskeletal stabilization and destabilization when expressed in neuroblastoma cells. Using this nuclear tension sensor, we find that induced expression of pathogenic tau is sufficient to decrease nuclear tension. This work provides the initial proof-of-concept evidence that pathogenic forms of tau alter nuclear tension, paving the way for the future study of altered nuclear mechanosensing in the context of tau-mediated neurodegenerative disorders.

5.
Sci Adv ; 9(1): eabq5423, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608133

RESUMEN

Deposition of tau protein aggregates in the brain of affected individuals is a defining feature of "tauopathies," including Alzheimer's disease. Studies of human brain tissue and various model systems of tauopathy report that toxic forms of tau negatively affect nuclear and genomic architecture, identifying pathogenic tau-induced heterochromatin decondensation and consequent retrotransposon activation as a causal mediator of neurodegeneration. On the basis of their similarity to retroviruses, retrotransposons drive neuroinflammation via toxic intermediates, including double-stranded RNA (dsRNA). We find that dsRNA and dsRNA sensing machinery are elevated in astrocytes of postmortem brain tissue from patients with Alzheimer's disease and progressive supranuclear palsy and in brains of tau transgenic mice. Using a Drosophila model of tauopathy, we identify specific tau-induced retrotransposons that form dsRNA and find that pathogenic tau and heterochromatin decondensation causally drive dsRNA-mediated neurodegeneration and neuroinflammation. Our study suggests that pathogenic tau-induced heterochromatin decondensation and retrotransposon activation cause elevation of inflammatory, transposable element-derived dsRNA in the adult brain.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Adulto , Humanos , Enfermedad de Alzheimer/metabolismo , Elementos Transponibles de ADN , Retroelementos/genética , ARN Bicatenario/metabolismo , Enfermedades Neuroinflamatorias , Heterocromatina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Drosophila/genética
6.
Prog Neurobiol ; 208: 102181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670118

RESUMEN

Transposable elements comprise almost half of the mammalian genome. A growing body of evidence suggests that transposable element dysregulation accompanies brain aging and neurodegenerative disorders, and that transposable element activation is neurotoxic. Recent studies have identified links between pathogenic forms of tau, a protein that accumulates in Alzheimer's disease and related "tauopathies," and transposable element-induced neurotoxicity. Starting with transcriptomic analyses, we find that age- and tau-induced transposable element activation occurs in the mouse brain. Among transposable elements that are activated at the RNA level in the context of brain aging and tauopathy, we find that the endogenous retrovirus (ERV) class of retrotransposons is particularly enriched. We show that protein encoded by Intracisternal A-particle, a highly active mouse ERV, is elevated in brains of tau transgenic mice. Using two complementary approaches, we find that brains of tau transgenic mice contain increased DNA copy number of transposable elements, raising the possibility that these elements actively retrotranspose in the context of tauopathy. Taken together, our study lays the groundwork for future mechanistic studies focused on transposable element regulation in the aging mouse brain and in mouse models of tauopathy and provides support for ongoing therapeutic efforts targeting transposable element activation in patients with Alzheimer's disease.


Asunto(s)
Elementos Transponibles de ADN , Proteínas tau , Envejecimiento/genética , Animales , Encéfalo/metabolismo , Elementos Transponibles de ADN/genética , Modelos Animales de Enfermedad , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismo
7.
J Med Chem ; 64(15): 11527-11542, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34260228

RESUMEN

The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound 56). The pharmacological characterization of these GPR139 agonists in vivo demonstrated GPR139-agonist-dependent modulation of habenula cell activity and revealed consistent in vivo efficacy to rescue social interaction deficits in the BALB/c mouse strain. The clinical GPR139 agonist TAK-041 is being explored as a novel drug to treat negative symptoms in SCZ.


Asunto(s)
Descubrimiento de Drogas , Proteínas del Tejido Nervioso/agonistas , Receptores Acoplados a Proteínas G/agonistas , Esquizofrenia/tratamiento farmacológico , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Estructura Molecular , Proteínas del Tejido Nervioso/deficiencia , Receptores Acoplados a Proteínas G/deficiencia , Relación Estructura-Actividad
8.
Integr Comp Biol ; 61(5): 1619-1630, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34143201

RESUMEN

Numerous aquatic invertebrates use drag-based metachronal rowing for swimming, in which closely spaced appendages are oscillated starting from the posterior, with each appendage phase-shifted in time relative to its neighbor. Continuously swimming species such as Antarctic krill generally use "pure metachronal rowing" consisting of a metachronal power stroke and a metachronal recovery stroke, while burst swimming species such as many copepods and mantis shrimp typically use "hybrid metachronal rowing" consisting of a metachronal power stroke followed by a synchronous or nearly synchronous recovery stroke. Burst swimming organisms need to rapidly accelerate in order to capture prey and/or escape predation, and it is unknown whether hybrid metachronal rowing can augment acceleration and swimming speed compared to pure metachronal rowing. Simulations of rigid paddles undergoing simple harmonic motion showed that collisions between adjacent paddles restrict the maximum stroke amplitude for pure metachronal rowing. Hybrid metachronal rowing similar to that observed in mantis shrimp (Neogonodactylus bredini) permits oscillation at larger stroke amplitude while avoiding these collisions. We comparatively examined swimming speed, acceleration, and wake structure of pure and hybrid metachronal rowing strategies by using a self-propelling robot. Both swimming speed and peak acceleration of the robot increased with increasing stroke amplitude. Hybrid metachronal rowing permitted operation at larger stroke amplitude without collision of adjacent paddles on the robot, augmenting swimming speed and peak acceleration. Hybrid metachronal rowing generated a dispersed wake unlike narrower, downward-angled jets generated by pure metachronal rowing. Our findings suggest that burst swimming animals with small appendage spacing, such as copepods and mantis shrimp, can use hybrid metachronal rowing to generate large accelerations via increasing stroke amplitude without concern of appendage collision.


Asunto(s)
Aceleración , Natación , Animales , Fenómenos Biomecánicos , Extremidades , Invertebrados
9.
J Med Chem ; 64(14): 9875-9890, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-33861086

RESUMEN

Parkinson's disease (PD) is a chronic and progressive movement disorder with the urgent unmet need for efficient symptomatic therapies with fewer side effects. GPR6 is an orphan G-protein coupled receptor (GPCR) with highly restricted expression in dopamine receptor D2-type medium spiny neurons (MSNs) of the indirect pathway, a striatal brain circuit which shows aberrant hyperactivity in PD patients. Potent and selective GPR6 inverse agonists (IAG) were developed starting from a low-potency screening hit (EC50 = 43 µM). Herein, we describe the multiple parameter optimization that led to the discovery of multiple nanomolar potent and selective GPR6 IAG, including our clinical compound CVN424. GPR6 IAG reversed haloperidol-induced catalepsy in rats and restored mobility in the bilateral 6-OHDA-lesioned rat PD model demonstrating that inhibition of GPR6 activity in vivo normalizes activity in basal ganglia circuitry and motor behavior. CVN424 is currently in clinical development to treat motor symptoms in Parkinson's disease.


Asunto(s)
Descubrimiento de Drogas , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
10.
Pain ; 162(10): 2599-2612, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872235

RESUMEN

ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.


Asunto(s)
Antineoplásicos , Disfunción Cognitiva , Enfermedades del Sistema Nervioso Periférico , Animales , Antineoplásicos/toxicidad , Modelos Animales de Enfermedad , Humanos , Leucina Zippers , Ratones , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Calidad de Vida
11.
Annu Rev Med ; 72: 15-28, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867590

RESUMEN

Genetic studies of autosomal dominant Alzheimer's disease (AD) revealed that ß-amyloid is central to disease pathogenesis. However, amyloid-targeted therapies have generally failed to slow progression in patients with symptomatic disease. This result suggests a transition from an early amyloid-dependent phase to a later amyloid-independent one, during which neurodegeneration occurs and symptoms arise. Microglia, the brain's resident myeloid cells, envelop amyloid and express the majority of genes linked to risk for sporadic late-onset AD. Their activation is associated spatially and temporally with the accumulation of pathological tau. Microglial facilitation of tau pathology may involve apolipoprotein E, the most important genetic risk factor for AD. Once formed, pathological tau spreads between connected neurons, eventually accumulating in the somatic compartment where catastrophic nuclear damage ensues. This emerging understanding of the postamyloid processes leading to neurodegeneration affords the opportunity to develop therapeutics that interrupt this pathological cascade and prevent or delay dementia, even after amyloid deposition.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/antagonistas & inhibidores , Terapia Genética/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Humanos
12.
13.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659913

RESUMEN

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiología , Homeostasis/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Estrés Fisiológico/fisiología , Animales , Axones/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Transcriptoma/fisiología
14.
Front Aging Neurosci ; 11: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804776

RESUMEN

APOE4 is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction. This review article will summarize how APOE4 alters specific pathways in astrocytes and microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein without enzymatic activity, may prove challenging to directly target therapeutically in the classical sense. Therefore, a deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduce APOE4-mediated disease risk.

15.
Netw Neurosci ; 2(2): 241-258, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30215035

RESUMEN

Neurodegeneration in Alzheimer's disease (AD) is associated with amyloid-beta peptide accumulation into insoluble amyloid plaques. The five-familial AD (5XFAD) transgenic mouse model exhibits accelerated amyloid-beta deposition, neuronal dysfunction, and cognitive impairment. We aimed to determine whether connectome properties of these mice parallel those observed in patients with AD. We obtained diffusion tensor imaging and resting-state functional magnetic resonance imaging data for four transgenic and four nontransgenic male mice. We constructed both structural and functional connectomes and measured their topological properties by applying graph theoretical analysis. We compared connectome properties between groups using both binarized and weighted networks. Transgenic mice showed higher characteristic path length in weighted structural connectomes and functional connectomes at minimum density. Normalized clustering and modularity were lower in transgenic mice across the upper densities of the structural connectome. Transgenic mice also showed lower small-worldness index in higher structural connectome densities and in weighted structural networks. Hyper-correlation of structural and functional connectivity was observed in transgenic mice compared with nontransgenic controls. These preliminary findings suggest that 5XFAD mouse connectomes may provide useful models for investigating the molecular mechanisms of AD pathogenesis and testing the effectiveness of potential treatments.

16.
ACS Med Chem Lett ; 9(7): 652-656, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30034595

RESUMEN

Identification of ligands that selectively activate the M1 muscarinic signaling pathway has been sought for decades to treat a range of neurological and cognitive disorders. Herein, we describe the optimization efforts focused on addressing key physicochemical and safety properties, ultimately leading to the clinical candidate MK-7622, a highly selective positive allosteric modulator of the M1 muscarinic receptor that has entered Phase II studies in patients with Alzheimer's disease.

17.
Alzheimers Dement (Amst) ; 9: 67-75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201992

RESUMEN

INTRODUCTION: Breast cancer chemotherapy is associated with accelerated aging and potentially increased risk for Alzheimer's disease (AD). METHODS: We calculated the probability of AD diagnosis from brain network and demographic and genetic data obtained from 47 female AD converters and 47 matched healthy controls. We then applied this algorithm to data from 78 breast cancer survivors. RESULTS: The classifier discriminated between AD and healthy controls with 86% accuracy (P < .0001). Chemotherapy-treated breast cancer survivors demonstrated significantly higher probability of AD compared to healthy controls (P < .0001) and chemotherapy-naïve survivors (P = .007), even after stratifying for apolipoprotein e4 genotype. Chemotherapy-naïve survivors also showed higher AD probability compared to healthy controls (P = .014). DISCUSSION: Chemotherapy-treated breast cancer survivors who have a particular profile of brain structure may have a higher risk for AD, especially those who are older and have lower cognitive reserve.

19.
Neurobiol Dis ; 76: 67-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25661301

RESUMEN

Levodopa is the most effective therapy for the motor deficits of Parkinson's disease (PD), but long term treatment leads to the development of L-DOPA-induced dyskinesia (LID). Our previous studies indicate enhanced excitability of striatal cholinergic interneurons (ChIs) in mice expressing LID and reduction of LID when ChIs are selectively ablated. Recent gene expression analysis indicates that stimulatory H2 histamine receptors are preferentially expressed on ChIs at high levels in the striatum, and we tested whether a change in H2 receptor function might contribute to the elevated excitability in LID. Using two different mouse models of PD (6-hydroxydopamine lesion and Pitx3(ak/ak) mutation), we chronically treated the animals with either vehicle or l-DOPA to induce dyskinesia. Electrophysiological recordings indicate that histamine H2 receptor-mediated excitation of striatal ChIs is enhanced in mice expressing LID. Additionally, H2 receptor blockade by systemic administration of famotidine decreases behavioral LID expression in dyskinetic animals. These findings suggest that ChIs undergo a pathological change in LID with respect to histaminergic neurotransmission. The hypercholinergic striatum associated with LID may be dampened by inhibition of H2 histaminergic neurotransmission. This study also provides a proof of principle of utilizing selective gene expression data for cell-type-specific modulation of neuronal activity.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Discinesia Inducida por Medicamentos/fisiopatología , Enfermedad de Parkinson/complicaciones , Receptores Histamínicos H2/metabolismo , Potenciales de Acción , Animales , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/metabolismo , Diciclomina/administración & dosificación , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/metabolismo , Famotidina/administración & dosificación , Antagonistas de los Receptores H2 de la Histamina/farmacología , Interneuronas/metabolismo , Interneuronas/fisiología , Levodopa , Ratones , Ratones Endogámicos C57BL
20.
PLoS One ; 10(2): e0115369, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25723573

RESUMEN

The progressive aggregation of Amyloid-ß (Aß) in the brain is a major trait of Alzheimer's Disease (AD). Aß is produced as a result of proteolytic processing of the ß-amyloid precursor protein (APP). Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPß, Aß40, and Aß42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aß40 production over Aß42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPß production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A) recently implicated with AD through genome wide association studies (GWAS) and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the "regulatory landscape" of APP.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Técnicas Genéticas , Redes y Vías Metabólicas , ARN Interferente Pequeño/análisis , Péptidos beta-Amiloides/metabolismo , Supervivencia Celular , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Proteína Amiloide A Sérica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...