Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 876: 103-110, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26782201

RESUMEN

The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.


Asunto(s)
Mitocondrias/metabolismo , Oxígeno/metabolismo , Transporte Biológico , Humanos , Pulmón/metabolismo , Modelos Biológicos
2.
F1000Res ; 4: 1461, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28698795

RESUMEN

The Modular Program Constructor (MPC) is an open-source Java based utility, built upon JSim's Mathematical Modeling Language (MML) ( http://www.physiome.org/jsim/) that uses directives embedded in model code to construct larger, more complicated models quickly and with less error than manually combining models. A major obstacle in writing complex programs for modeling physiological processes is the large amount of time it takes to code the myriad processes taking place simultaneously in cells, tissues, and organs. MPC replaces this task by code-generating algorithms that take the code from several different modules and produce model code for a new JSim model. This is particularly useful during multi-scale model development where many variants are to be configured and tested against data. MPC is implemented in Java and requires JSim to use its output. MPC source code and documentation are available at http://www.physiome.org/software/MPC/.

3.
F1000Res ; 2: 288, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24555116

RESUMEN

JSim is a simulation system for developing models, designing experiments, and evaluating hypotheses on physiological and pharmacological systems through the testing of model solutions against data. It is designed for interactive, iterative manipulation of the model code, handling of multiple data sets and parameter sets, and for making comparisons among different models running simultaneously or separately. Interactive use is supported by a large collection of graphical user interfaces for model writing and compilation diagnostics, defining input functions, model runs, selection of algorithms solving ordinary and partial differential equations, run-time multidimensional graphics, parameter optimization (8 methods), sensitivity analysis, and Monte Carlo simulation for defining confidence ranges. JSim uses Mathematical Modeling Language (MML) a declarative syntax specifying algebraic and differential equations. Imperative constructs written in other languages (MATLAB, FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is simple, basically defining the parameters and variables, then writing the equations in a straightforward, easily read and understood mathematical form. This makes JSim good for teaching modeling as well as for model analysis for research.   For high throughput applications, JSim can be run as a batch job.  JSim can automatically translate models from the repositories for Systems Biology Markup Language (SBML) and CellML models. Stochastic modeling is supported. MML supports assigning physical units to constants and variables and automates checking dimensional balance as the first step in verification testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The JSim Project File sets a standard for reproducible modeling analysis: it includes in one file everything for analyzing a set of experiments: the data, the models, the data fitting, and evaluation of parameter confidence ranges. JSim is open source; it and about 400 human readable open source physiological/biophysical models are available at http://www.physiome.org/jsim/.

4.
Methods Mol Biol ; 929: 391-438, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23007439

RESUMEN

Compartmental models are composed of sets of interconnected mixing chambers or stirred tanks. Each component of the system is considered to be homogeneous, instantly mixed, with uniform concentration. The state variables are concentrations or molar amounts of chemical species. Chemical reactions, transmembrane transport, and binding processes, determined in reality by electrochemical driving forces and constrained by thermodynamic laws, are generally treated using first-order rate equations. This fundamental simplicity makes them easy to compute since ordinary differential equations (ODEs) are readily solved numerically and often analytically. While compartmental systems have a reputation for being merely descriptive they can be developed to levels providing realistic mechanistic features through refining the kinetics. Generally, one is considering multi-compartmental systems for realistic modeling. Compartments can be used as "black" box operators without explicit internal structure, but in pharmacokinetics compartments are considered as homogeneous pools of particular solutes, with inputs and outputs defined as flows or solute fluxes, and transformations expressed as rate equations.Descriptive models providing no explanation of mechanism are nevertheless useful in modeling of many systems. In pharmacokinetics (PK), compartmental models are in widespread use for describing the concentration-time curves of a drug concentration following administration. This gives a description of how long it remains available in the body, and is a guide to defining dosage regimens, method of delivery, and expectations for its effects. Pharmacodynamics (PD) requires more depth since it focuses on the physiological response to the drug or toxin, and therefore stimulates a demand to understand how the drug works on the biological system; having to understand drug response mechanisms then folds back on the delivery mechanism (the PK part) since PK and PD are going on simultaneously (PKPD).Many systems have been developed over the years to aid in modeling PKPD systems. Almost all have solved only ODEs, while allowing considerable conceptual complexity in the descriptions of chemical transformations, methods of solving the equations, displaying results, and analyzing systems behavior. Systems for compartmental analysis include Simulation and Applied Mathematics, CoPasi (enzymatic reactions), Berkeley Madonna (physiological systems), XPPaut (dynamical system behavioral analysis), and a good many others. JSim, a system allowing the use of both ODEs and partial differential equations (that describe spatial distributions), is used here. It is an open source system, meaning that it is available for free and can be modified by users. It offers a set of features unique in breadth of capability that make model verification surer and easier, and produces models that can be shared on all standard computer platforms.


Asunto(s)
Simulación por Computador , Algoritmos , Farmacocinética
5.
Ann N Y Acad Sci ; 1188: 111-20, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20201893

RESUMEN

Large-scale models accounting for the processes supporting metabolism and function in an organ or tissue with a marked heterogeneity of flows and metabolic rates are computationally complex and tedious to compute. Their use in the analysis of data from positron emission tomography (PET) and magnetic resonance imaging (MRI) requires model reduction since the data are composed of concentration-time curves from hundreds of regions of interest (ROI) within the organ. Within each ROI, one must account for blood flow, intracapillary gradients in concentrations, transmembrane transport, and intracellular reactions. Using modular design, we configured a whole organ model, GENTEX, to allow adaptive usage for multiple reacting molecular species while omitting computation of unused components. The temporal and spatial resolution and the number of species are adaptable and the numerical accuracy and computational speed is adjustable during optimization runs, which increases accuracy and spatial resolution as convergence approaches. An application to the interpretation of PET image sequences after intravenous injection of 13NH3 provides functional image maps of regional myocardial blood flows.


Asunto(s)
Modelos Biológicos , Animales , Vasos Coronarios/metabolismo , Bases de Datos Factuales , Heterogeneidad Genética , Miocardio/metabolismo
6.
Adv Exp Med Biol ; 614: 353-60, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18290346

RESUMEN

The binding and buffering of O2 and CO2 in the blood influence their exchange in lung and tissues and their transport through the circulation. To investigate the binding and buffering effects, a model of blood-tissue gas exchange is used. The model accounts for hemoglobin saturation, the simultaneous binding of O2, CO2, H+, 2,3-DPG to hemoglobin, and temperature effects. Invertible Hill-type saturation equations facilitate rapid calculation of respiratory gas redistribution among the plasma, red blood cell and tissue that occur along the concentration gradients in the lung and in the capillary-tissue exchange regions. These equations are well-suited to analysis of transients in tissue metabolism and partial pressures of inhaled gas. The modeling illustrates that because red blood cell velocities in the flowing blood are higher than plasma velocities after a transient there can be prolonged differences between RBC and plasma oxygen partial pressures. The blood-tissue gas exchange model has been incorporated into a higher level model of the circulatory system plus pulmonary mechanics and gas exchange using the RBC and plasma equations to account for pH and CO2 buffering in the blood.


Asunto(s)
Dióxido de Carbono/metabolismo , Modelos Cardiovasculares , Oxígeno/metabolismo , Animales , Transporte Biológico Activo , Simulación por Computador , Ácidos Difosfoglicéricos/metabolismo , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Presión Parcial , Protones , Intercambio Gaseoso Pulmonar/fisiología , Transporte Respiratorio/fisiología , Temperatura
7.
Philos Trans A Math Phys Eng Sci ; 364(1843): 1423-42, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16766353

RESUMEN

Endothelial cells lining myocardial capillaries not only impede transport of blood solutes to the contractile cells, but also take up and release substrates, competing with myocytes. Solutes permeating this barrier exhibit concentration gradients along the capillary. This paper introduces a generic model, GENTEX, to characterize blood-tissue exchanges. GENTEX is a whole organ model of the vascular network providing intraorgan flow heterogeneity and accounts for substrate transmembrane transport, binding and metabolism in erythrocytes, plasma, endothelial cells, interstitial space and cardiomyocytes. The model is tested here for the analysis of multiple tracer indicator dilution data on purine nucleoside metabolism in the isolated Krebs-Henseleit-perfused non-working hearts. It has been also used for analysing NMR contrast data for regional myocardial flows and for positron emission tomographic studies of cardiac receptor kinetics. The facilitating transporters, binding sites and enzymatic reactions are nonlinear elements and allow competition between substrates and a reaction sequence of up to five substrate-product reactions in a metabolic network. Strategies for application start with experiment designs incorporating inert reference tracers. For the estimation of endothelial and sarcolemmal permeability-surface area products and metabolism of the substrates and products, model solutions were optimized to fit the data from pairs of tracer injections (of either inosine or adenosine, plus the reference tracers) injected under the same circumstances a few minutes later. The results provide a self-consistent description of nucleoside metabolism in a beating well-perfused rabbit heart, and illustrate the power of the model to fit multiple datasets simultaneously.


Asunto(s)
Permeabilidad Capilar/fisiología , Vasos Coronarios/metabolismo , Endotelio Vascular/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Miocardio/metabolismo , Nucleósidos/metabolismo , Animales , Transporte Biológico Activo/fisiología , Simulación por Computador , Metabolismo Energético/fisiología , Cobayas , Conejos
8.
Physica A ; 265(1-2): 85-96, 1999 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23077376

RESUMEN

Methods for estimating the fractal dimension, D, or the related Hurst coefficient, H, for a one-dimensional fractal series include Hurst's method of rescaled range analysis, spectral analysis, dispersional analysis, and scaled windowed variance analysis (which is related to detrended fluctuation analysis). Dispersional analysis estimates H by using the variance of the grouped means of discrete fractional Gaussian noise series (DfGn). Scaled windowed variance analysis estimates H using the mean of grouped variances of discrete fractional Brownian motion (DfBm) series. Both dispersional analysis and scaled windowed variance analysis have small bias and variance in their estimates of the Hurst coefficient. This study demonstrates that both methods derive their accuracy from their strict mathematical relationship to the expected value of the correlation function of DfGn. The expected values of the variance of the grouped means for dispersional analysis on DfGn and the mean of the grouped variance for scaled windowed variance analysis on DfBm are calculated. An improved formulation for scaled windowed variance analysis is given. The expected values using these analyses on the wrong kind of series (dispersional analysis on DfBm and scaled windowed variance analysis on DfGn) are also calculated.

9.
J Phys A Math Gen ; 31(28): L527, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-21765583

RESUMEN

As a generalization of one-dimensional fractional Brownian motion (1dfBm), we introduce a class of two-dimensional, self-similar, strongly correlated random walks whose variance scales with power law N(2) (H) (0 < H < 1). We report analytical results on the statistical size and shape, and segment distribution of its trajectory in the limit of large N. The relevance of these results to polymer theory is discussed. We also study the basic properties of a second generalization of 1dfBm, the two-dimensional fractional Brownian random field (2dfBrf). It is shown that the product of two 1dfBms is the only 2dfBrf which satisfies the self-similarity defined by Sinai.

10.
Physica A ; 241(3-4): 606-626, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22049250

RESUMEN

Three-scaled windowed variance methods (standard, linear regression detrended, and brdge detrended) for estimating the Hurst coefficient (H) are evaluated. The Hurst coefficient, with 0 < H < 1, characterizes self-similar decay in the time-series autocorrelation function. The scaled windowed variance methods estimate H for fractional Brownian motion (fBm) signals which are cumulative sums of fractional Gaussian noise (fGn) signals. For all three methods both the bias and standard deviation of estimates are less than 0.05 for series having N ≥ 2(9) points. Estimates for short series (N < 2(8)) are unreliable. To have a 0.95 probability of distinguishing between two signals with true H differing by 0.1, more than 2(15) points are needed. All three methods proved more reliable (based on bias and variance of estimates) than Hurst's rescaled range analysis, periodogram analysis, and autocorrelation analysis, and as reliable as dispersional analysis. The latter methods can only be applied to fGn or differences of fBm, while the scaled windowed variance methods must be applied to fBm or cumulative sums of fGn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...