Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5001, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866741

RESUMEN

Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.


Asunto(s)
Genómica , Gryllidae , Animales , Gryllidae/genética , Gryllidae/fisiología , Masculino , Genómica/métodos , Hawaii , Adaptación Fisiológica/genética , Desequilibrio de Ligamiento , Genoma de los Insectos , Evolución Biológica , Femenino , Mutación , Selección Genética , Evolución Molecular , Transcriptoma/genética
2.
Curr Biol ; 34(2): 403-409.e3, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38141618

RESUMEN

The initial process by which novel sexual signals evolve remains unclear, because rare new variants are susceptible to loss by drift or counterselection imposed by prevailing female preferences.1,2,3,4 We describe the diversification of an acoustic male courtship signal in Hawaiian populations of the field cricket Teleogryllus oceanicus, which was brought about by the evolution of a brachypterous wing morph ("small-wing") only 6 years ago.5 Small-wing has a genetic basis and causes silence or reduced-amplitude signaling by miniaturizing male forewings, conferring protection against an eavesdropping parasitoid, Ormia ochracea.5 We found that wing reduction notably increases the fundamental frequency of courtship song from an average of 5.1 kHz to 6.4 kHz. It also de-canalizes male song, broadening the range of peak signal frequencies well outside normal song character space. As courtship song prompts female mounting and is sexually selected,6,7,8,9 we evaluated two scenarios to test the fate of these new signal values. Females might show reduced acceptance of small-wing males, imposing counterselection via prevailing preferences. Alternatively, females might accept small-wing males as readily as long-wing males if their window of preference is sufficiently wide. Our results support the latter. Females preferred males who produced some signal over none, but they mounted sound-producing small-wing males as often as sound-producing long-wing males. Indiscriminate mating can facilitate the persistence of rare, novel signal values. If female permissiveness is a general characteristic of the earliest stages of sexual signal evolution, then taxa with low female mate acceptance thresholds should be more prone to diversification via sexual selection.


Asunto(s)
Gryllidae , Conducta Sexual Animal , Animales , Masculino , Femenino , Alas de Animales , Hawaii , Sonido , Acústica
3.
Biol Rev Camb Philos Soc ; 97(4): 1389-1407, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35218283

RESUMEN

Behavioural traits are often noted to persist after relaxation or removal of associated selection pressure, whereas it has been observed that morphological traits under similar conditions appear to decay more rapidly. Despite this, persistent non-adaptive, 'vestigial' behavioural variation has received little research scrutiny. Here we review published examples of vestigial behavioural traits, highlighting their surprising prevalence, and argue that their further study can reveal insights about the widely debated role of behaviour in evolution. Some vestigial behaviours incur fitness costs, so may act as a drag on adaptive evolution when that adaptation occurs via trait loss or reversal. In other cases, vestigial behaviours can contribute to future evolutionary trajectories, for example by preserving genetic and phenotypic variation which is later co-opted by selection during adaptive evolution or diversification, or through re-emergence after ancestral selection pressures are restored. We explore why vestigial behaviours appear prone to persistence. Behavioural lag may be a general phenomenon arising from relatively high levels of non-genetic variation in behavioural expression, and pleiotropic constraint. Long-term persistence of non-adaptive behavioural traits could also result when their expression is associated with morphological features which might be more rapidly lost or reduced. We propose that vestigial behaviours could provide a substrate for co-option by novel selective forces, and advocate further study of the fate of behavioural traits following relaxed and reversed selection. Vestigial behaviours have been relatively well studied in the context of antipredator behaviours, but they are far from restricted to this ecological context, and so deserve broader consideration. They also have practical importance, with mixed evidence, for example, as to whether predator/parasite-avoidance behaviours are rapidly lost in wildlife refuges and captivity. We identify important areas for future research to help determine whether vestigial behaviours essentially represent a form of evolutionary lag, or whether they have more meaningful evolutionary consequences distinct from those of other vestigial and behavioural traits.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Adaptación Fisiológica/genética , Fenotipo
4.
Evol Lett ; 5(5): 444-457, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34621532

RESUMEN

There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including genetic coupling via physical linkage and pleiotropy, and illustrate the consequences for adaptation rates using numerical simulations. Such genetic covariances may also arise from the social environment, and we suggest the indirect genetic effects that result could further accentuate the process of adaptation. We call the latter mechanism of adaptation social drive, and identify methods to test it. We suggest that genetic coupling of plasticity and adaptations could promote unusually rapid 'runaway' evolution of novel adaptations. The resultant dynamics could facilitate evolutionary rescue, adaptive radiations, the origin of novelties, and other commonly studied processes.

5.
Proc Biol Sci ; 288(1947): 20210355, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33757350

RESUMEN

Recent theory has suggested that dosage compensation mediates sexual antagonism over X-linked genes. This process relies on the assumption that dosage compensation scales phenotypic effects between the sexes, which is largely untested. We evaluated this by quantifying transcriptome variation associated with a recently arisen, male-beneficial, X-linked mutation across tissues of the field cricket Teleogryllus oceanicus, and testing the relationship between the completeness of dosage compensation and female phenotypic effects at the level of gene expression. Dosage compensation in T. oceanicus was variable across tissues but usually incomplete, such that relative expression of X-linked genes was typically greater in females. Supporting the assumption that dosage compensation scales phenotypic effects between the sexes, we found tissues with incomplete dosage compensation tended to show female-skewed effects of the X-linked allele. In gonads, where expression of X-linked genes was most strongly female-biased, ovaries-limited genes were much more likely to be X-linked than were testes-limited genes, supporting the view that incomplete dosage compensation favours feminization of the X. Our results support the expectation that sex chromosome dosage compensation scales phenotypic effects of X-linked genes between sexes, substantiating a key assumption underlying the theoretical role of dosage compensation in determining the dynamics of sexual antagonism on the X.


Asunto(s)
Compensación de Dosificación (Genética) , Genes Ligados a X , Femenino , Masculino , Mutación , Cromosomas Sexuales , Transcriptoma
6.
Nat Commun ; 12(1): 50, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397914

RESUMEN

Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which 'flatwing' males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.


Asunto(s)
Adaptación Fisiológica/genética , Flujo Génico , Gryllidae/genética , Gryllidae/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Variación Genética , Genética de Población , Genoma de los Insectos , Geografía , Hawaii , Islas , Masculino , Selección Genética , Alas de Animales/anatomía & histología
7.
Biol Lett ; 16(6): 20190931, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32544378

RESUMEN

Evolutionary loss of sexual signals is widespread. Examining the consequences for behaviours associated with such signals can provide insight into factors promoting or inhibiting trait loss. We tested whether a behavioural component of a sexual trait, male calling effort, has been evolutionary reduced in silent populations of Hawaiian field crickets (Teleogryllus oceanicus). Cricket song requires energetically costly wing movements, but 'flatwing' males have feminized wings that preclude song and protect against a lethal, eavesdropping parasitoid. Flatwing males express wing movement patterns associated with singing but, in contrast with normal-wing males, sustained periods of wing movement cannot confer sexual selection benefits and should be subject to strong negative selection. We developed an automated technique to quantify how long males spend expressing wing movements associated with song. We compared calling effort among populations of Hawaiian crickets with differing proportions of silent males and between male morphs. Contrary to expectation, silent populations invested as much in calling effort as non-silent populations. Additionally, flatwing and normal-wing males from the same population did not differ in calling effort. The lack of evolved behavioural adjustment following morphological change in silent Hawaiian crickets illustrates how behaviour might sometimes impede, rather than facilitate, evolution.


Asunto(s)
Gryllidae , Conducta Sexual Animal , Vocalización Animal , Comunicación Animal , Animales , Hawaii , Masculino , Alas de Animales
8.
Evol Lett ; 4(1): 19-33, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32055408

RESUMEN

Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.

10.
Proc Biol Sci ; 286(1901): 20190497, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014218

RESUMEN

The loss of sexual ornaments is observed across taxa, and pleiotropic effects of such losses provide an opportunity to gain insight into underlying dynamics of sex-biased gene expression and intralocus sexual conflict (IASC). We investigated this in a Hawaiian field cricket, Teleogryllus oceanicus, in which an X-linked genotype ( flatwing) feminizes males' wings and eliminates their ability to produce sexually selected songs. We profiled adult gene expression across somatic and reproductive tissues of both sexes. Despite the feminizing effect of flatwing on male wings, we found no evidence of feminized gene expression in males. Instead, female transcriptomes were more strongly affected by flatwing than males', and exhibited demasculinized gene expression. These findings are consistent with a relaxation of IASC constraining female gene expression through loss of a male sexual ornament. In a follow-up experiment, we found reduced testes mass in flatwing males, whereas female carriers showed no reduction in egg production. By contrast, female carriers exhibited greater measures of body condition. Our results suggest sex-limited phenotypic expression offers only partial resolution to IASC, owing to pleiotropic effects of the loci involved. Benefits conferred by release from intralocus conflict could help explain widespread loss of sexual ornaments across taxa.


Asunto(s)
Expresión Génica , Gryllidae/genética , Selección Genética , Conducta Sexual Animal , Animales , Femenino , Masculino , Caracteres Sexuales , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...