Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Metab Eng ; 82: 216-224, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367764

RESUMEN

Metabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth. Here, we provide a classification of all existing constraint-based approaches that predict and integrate MPIs using genome-scale metabolic networks as input. In addition, we benchmark the performance of the approaches to predict MPIs in a comparative study using different features extracted from the model structure and predicted metabolic phenotypes with the state-of-the-art metabolic networks of Escherichia coli and Saccharomyces cerevisiae. Lastly, we provide an outlook for future, feasible directions to expand the consideration of MPIs in constraint-based modeling approaches with wide biotechnological applications.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Redes y Vías Metabólicas/genética , Fenotipo
2.
PLoS Comput Biol ; 19(9): e1011489, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721963

RESUMEN

Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Redes y Vías Metabólicas
3.
Metab Eng ; 79: 97-107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422133

RESUMEN

Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid ß-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ingeniería Metabólica , Optogenética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo
4.
Bioinform Adv ; 3(1): vbad098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521309

RESUMEN

Motivation: Metabolite-protein interactions play an important role in regulating protein functions and metabolism. Yet, predictions of metabolite-protein interactions using genome-scale metabolic networks are lacking. Here, we fill this gap by presenting a computational framework, termed SARTRE, that employs features corresponding to shadow prices determined in the context of flux variability analysis to predict metabolite-protein interactions using supervised machine learning. Results: By using gold standards for metabolite-protein interactomes and well-curated genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, we found that the implementation of SARTRE with random forest classifiers accurately predicts metabolite-protein interactions, supported by an average area under the receiver operating curve of 0.86 and 0.85, respectively. Ranking of features based on their importance for classification demonstrated the key role of shadow prices in predicting metabolite-protein interactions. The quality of predictions is further supported by the excellent agreement of the organism-specific classifiers on unseen interactions shared between the two model organisms. Further, predictions from SARTRE are highly competitive against those obtained from a recent deep-learning approach relying on a variety of protein and metabolite features. Together, these findings show that features extracted from constraint-based analyses of metabolic networks pave the way for understanding the functional roles of the interactions between proteins and small molecules. Availability and implementation: https://github.com/fayazsoleymani/SARTRE.

5.
Nat Commun ; 14(1): 1485, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932067

RESUMEN

Turnover numbers characterize a key property of enzymes, and their usage in constraint-based metabolic modeling is expected to increase the prediction accuracy of diverse cellular phenotypes. In vivo turnover numbers can be obtained by integrating reaction rate and enzyme abundance measurements from individual experiments. Yet, their contribution to improving predictions of condition-specific cellular phenotypes remains elusive. Here, we show that available in vitro and in vivo turnover numbers lead to poor prediction of condition-specific growth rates with protein-constrained models of Escherichia coli and Saccharomyces cerevisiae, particularly when protein abundances are considered. We demonstrate that correction of turnover numbers by simultaneous consideration of proteomics and physiological data leads to improved predictions of condition-specific growth rates. Moreover, the obtained estimates are more precise than corresponding in vitro turnover numbers. Therefore, our approach provides the means to correct turnover numbers and paves the way towards cataloguing kcatomes of other organisms.


Asunto(s)
Escherichia coli , Redes y Vías Metabólicas , Escherichia coli/metabolismo , Modelos Biológicos
6.
Comput Struct Biotechnol J ; 20: 3963-3971, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35950188

RESUMEN

Trade-offs between traits are present across different levels of biological systems and ultimately reflect constraints imposed by physicochemical laws and the structure of underlying biochemical networks. Yet, mechanistic explanation of how trade-offs between molecular traits arise and how they relate to optimization of fitness-related traits remains elusive. Here, we introduce the concept of relative flux trade-offs and propose a constraint-based approach, termed FluTOr, to identify metabolic reactions whose fluxes are in relative trade-off with respect to an optimized fitness-related cellular task, like growth. We then employed FluTOr to identify relative flux trade-offs in the genome-scale metabolic networks of Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana. For the metabolic models of E. coli and S. cerevisiae we showed that: (i) the identified relative flux trade-offs depend on the carbon source used and that (ii) reactions that participated in relative trade-offs in both species were implicated in cofactor biosynthesis. In contrast to the two microorganisms, the relative flux trade-offs for the metabolic model of A. thaliana did not depend on the available nitrogen sources, reflecting the differences in the underlying metabolic network as well as the considered environments. Lastly, the established connection between relative flux trade-offs allowed us to identify overexpression targets that can be used to optimize fitness-related traits. Altogether, our computational approach and findings demonstrate how relative flux trade-offs can shape optimization of metabolic tasks, important in biotechnological applications.

7.
Sci Rep ; 11(1): 23776, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893666

RESUMEN

Trade-offs are inherent to biochemical networks governing diverse cellular functions, from gene expression to metabolism. Yet, trade-offs between fluxes of biochemical reactions in a metabolic network have not been formally studied. Here, we introduce the concept of absolute flux trade-offs and devise a constraint-based approach, termed FluTO, to identify and enumerate flux trade-offs in a given genome-scale metabolic network. By employing the metabolic networks of Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the flux trade-offs are specific to carbon sources provided but that reactions involved in the cofactor and prosthetic group biosynthesis are present in trade-offs across all carbon sources supporting growth. We also show that absolute flux trade-offs depend on the biomass reaction used to model the growth of Arabidopsis thaliana under different carbon and nitrogen conditions. The identified flux trade-offs reflect the tight coupling between nitrogen, carbon, and sulphur metabolisms in leaves of C3 plants. Altogether, FluTO provides the means to explore the space of alternative metabolic routes reflecting the constraints imposed by inherent flux trade-offs in large-scale metabolic networks.


Asunto(s)
Metabolismo Energético , Redes y Vías Metabólicas , Modelos Biológicos , Algoritmos , Arabidopsis/fisiología , Carbono/metabolismo , Biología Computacional/métodos , Escherichia coli/fisiología , Nutrientes/metabolismo , Saccharomyces cerevisiae/fisiología , Biología de Sistemas/métodos
8.
Bioinformatics ; 37(21): 3848-3855, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358300

RESUMEN

MOTIVATION: Constraint-based modeling approaches allow the estimation of maximal in vivo enzyme catalytic rates that can serve as proxies for enzyme turnover numbers. Yet, genome-scale flux profiling remains a challenge in deploying these approaches to catalogue proxies for enzyme catalytic rates across organisms. RESULTS: Here, we formulate a constraint-based approach, termed NIDLE-flux, to estimate fluxes at a genome-scale level by using the principle of efficient usage of expressed enzymes. Using proteomics data from Escherichia coli, we show that the fluxes estimated by NIDLE-flux and the existing approaches are in excellent qualitative agreement (Pearson correlation > 0.9). We also find that the maximal in vivo catalytic rates estimated by NIDLE-flux exhibits a Pearson correlation of 0.74 with in vitro enzyme turnover numbers. However, NIDLE-flux results in a 1.4-fold increase in the size of the estimated maximal in vivo catalytic rates in comparison to the contenders. Integration of the maximum in vivo catalytic rates with publically available proteomics and metabolomics data provide a better match to fluxes estimated by NIDLE-flux. Therefore, NIDLE-flux facilitates more effective usage of proteomics data to estimate proxies for kcatomes. AVAILABILITY AND IMPLEMENTATION: https://github.com/Rudan-X/NIDLE-flux-code. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Escherichia coli , Modelos Biológicos , Redes y Vías Metabólicas , Metabolómica , Genoma
9.
Comput Struct Biotechnol J ; 19: 2170-2178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136091

RESUMEN

Mining of metabolite-protein interaction networks facilitates the identification of design principles underlying the regulation of different cellular processes. However, identification and characterization of the regulatory role that metabolites play in interactions with proteins on a genome-scale level remains a pressing task. Based on availability of high-quality metabolite-protein interaction networks and genome-scale metabolic networks, here we propose a supervised machine learning approach, called CIRI that determines whether or not a metabolite is involved in a competitive inhibitory regulatory interaction with an enzyme. First, we show that CIRI outperforms the naive approach based on a structural similarity threshold for a putative competitive inhibitor and the substrates of a metabolic reaction. We also validate the performance of CIRI on several unseen data sets and databases of metabolite-protein interactions not used in the training, and demonstrate that the classifier can be effectively used to predict competitive inhibitory interactions. Finally, we show that CIRI can be employed to refine predictions about metabolite-protein interactions from a recently proposed PROMIS approach that employs metabolomics and proteomics profiles from size exclusion chromatography in E. coli to predict metabolite-protein interactions. Altogether, CIRI fills a gap in cataloguing metabolite-protein interactions and can be used in directing future machine learning efforts to categorize the regulatory type of these interactions.

10.
Cell Mol Life Sci ; 78(12): 5123-5138, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33950314

RESUMEN

Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Redes y Vías Metabólicas , Metaboloma , Proteínas de Plantas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Modelos Biológicos , Proteínas de Plantas/genética
11.
Sci Rep ; 11(1): 8544, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879809

RESUMEN

Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation [Formula: see text], of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown [Formula: see text]. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown [Formula: see text] whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknown [Formula: see text] are eliminated. Our comparative analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens shows that the combined procedure provides an efficient means for systematic identification of lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according to the proposed procedure lead to more precise predictions in comparison to the original models. The provided implementation thus ensures the reproducibility of the findings and their application with standard TMFA.


Asunto(s)
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Análisis de Flujos Metabólicos/métodos , Algoritmos , Simulación por Computador , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Reproducibilidad de los Resultados , Termodinámica
12.
Sci Rep ; 11(1): 4787, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637852

RESUMEN

Ribosome biogenesis is tightly associated to plant metabolism due to the usage of ribosomes in the synthesis of proteins necessary to drive metabolic pathways. Given the central role of ribosome biogenesis in cell physiology, it is important to characterize the impact of different components involved in this process on plant metabolism. Double mutants of the Arabidopsis thaliana cytosolic 60S maturation factors REIL1 and REIL2 do not resume growth after shift to moderate 10 [Formula: see text] chilling conditions. To gain mechanistic insights into the metabolic effects of this ribosome biogenesis defect on metabolism, we developed TC-iReMet2, a constraint-based modelling approach that integrates relative metabolomics and transcriptomics time-course data to predict differential fluxes on a genome-scale level. We employed TC-iReMet2 with metabolomics and transcriptomics data from the Arabidopsis Columbia 0 wild type and the reil1-1 reil2-1 double mutant before and after cold shift. We identified reactions and pathways that are highly altered in a mutant relative to the wild type. These pathways include the Calvin-Benson cycle, photorespiration, gluconeogenesis, and glycolysis. Our findings also indicated differential NAD(P)/NAD(P)H ratios after cold shift. TC-iReMet2 allows for mechanistic hypothesis generation and interpretation of system biology experiments related to metabolic fluxes on a genome-scale level.


Asunto(s)
Arabidopsis/metabolismo , Ribosomas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación , Ribosomas/genética , Transcriptoma
13.
Bioinformatics ; 37(12): 1717-1723, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33245091

RESUMEN

MOTIVATION: Large-scale metabolic models are widely used to design metabolic engineering strategies for diverse biotechnological applications. However, the existing computational approaches focus on alteration of reaction fluxes and often neglect the manipulations of gene expression to implement these strategies. RESULTS: Here, we find that the association of genes with multiple reactions leads to infeasibility of engineering strategies at the flux level, since they require contradicting manipulations of gene expression. Moreover, we identify that all of the existing approaches to design gene knockout strategies do not ensure that the resulting design may also require other gene alterations, such as up- or downregulations, to match the desired flux distribution. To address these issues, we propose a constraint-based approach, termed GeneReg, that facilitates the design of feasible metabolic engineering strategies at the gene level and that is readily applicable to large-scale metabolic networks. We show that GeneReg can identify feasible strategies to overproduce ethanol in Escherichia coli and lactate in Saccharomyces cerevisiae, but overproduction of the TCA cycle intermediates is not feasible in five organisms used as cell factories under default growth conditions. Therefore, GeneReg points at the need to couple gene regulation and metabolism to design rational metabolic engineering strategies. AVAILABILITY AND IMPLEMENTATION: https://github.com/MonaRazaghi/GeneReg. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Escherichia coli/genética , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética , Modelos Biológicos , Saccharomyces cerevisiae/genética
14.
NPJ Syst Biol Appl ; 6(1): 21, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606380

RESUMEN

Characterisation of gene-regulatory network (GRN) interactions provides a stepping stone to understanding how genes affect cellular phenotypes. Yet, despite advances in profiling technologies, GRN reconstruction from gene expression data remains a pressing problem in systems biology. Here, we devise a supervised learning approach, GRADIS, which utilises support vector machine to reconstruct GRNs based on distance profiles obtained from a graph representation of transcriptomics data. By employing the data from Escherichia coli and Saccharomyces cerevisiae as well as synthetic networks from the DREAM4 and five network inference challenges, we demonstrate that our GRADIS approach outperforms the state-of-the-art supervised and unsupervided approaches. This holds when predictions about target genes for individual transcription factors as well as for the entire network are considered. We employ experimentally verified GRNs from E. coli and S. cerevisiae to validate the predictions and obtain further insights in the performance of the proposed approach. Our GRADIS approach offers the possibility for usage of other network-based representations of large-scale data, and can be readily extended to help the characterisation of other cellular networks, including protein-protein and protein-metabolite interactions.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Algoritmos , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Aprendizaje Automático Supervisado , Máquina de Vectores de Soporte , Biología de Sistemas , Factores de Transcripción/genética , Transcriptoma/genética
15.
Curr Protoc Plant Biol ; 5(2): e20106, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32207875

RESUMEN

Identifying the entirety of gene regulatory interactions in a biological system offers the possibility to determine the key molecular factors that affect important traits on the level of cells, tissues, and whole organisms. Despite the development of experimental approaches and technologies for identification of direct binding of transcription factors (TFs) to promoter regions of downstream target genes, computational approaches that utilize large compendia of transcriptomics data are still the predominant methods used to predict direct downstream targets of TFs, and thus reconstruct genome-wide gene-regulatory networks (GRNs). These approaches can broadly be categorized into unsupervised and supervised, based on whether data about known, experimentally verified gene-regulatory interactions are used in the process of reconstructing the underlying GRN. Here, we first describe the generic steps of supervised approaches for GRN reconstruction, since they have been recently shown to result in improved accuracy of the resulting networks? We also illustrate how they can be used with data from model organisms to obtain more accurate prediction of gene regulatory interactions. © 2020 The Authors. Basic Protocol 1: Construction of features used in supervised learning of gene regulatory interactions Basic Protocol 2: Learning the non-interacting TF-gene pairs Basic Protocol 3: Learning a classifier for gene regulatory interactions.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Genoma , Aprendizaje Automático Supervisado , Factores de Transcripción/genética
16.
J Biomed Inform ; 94: 103180, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31039404

RESUMEN

In recent studies, non-coding protein RNAs have been identified as microRNA that can be used as biomarkers for early diagnosis and treatment of cancer, that decrease mortality in cancer. A microRNA may target hundreds or thousands of genes and a gene may regulate several microRNAs, so determining which microRNA is associated with which cancer is a big challenge. Many computational methods have been performed to detect micoRNAs association with cancer, but more effort is needed with higher accuracy. Increasing research has shown that relationship between microRNAs and TFs play a significant role in the diagnosis of cancer. Therefore, we developed a new computational framework (CAMIRADA) to identify cancer-related microRNAs based on the relationship between microRNAs and disease genes (DG) in the protein network, the functional relationships between microRNAs and Transcription Factors (TF) on the co-expression network, and the relationship between microRNAs and the Differential Expression Gene (DEG) on co-expression network. The CAMIRADA was applied to assess breast cancer data from two HMDD and miR2Disease databases. In this study, the AUC for the 65 microRNAs of the top of the list was 0.95, which was more accurate than the similar methods used to detect microRNAs associated with the cancer artery.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , MicroARNs/genética , Femenino , Redes Reguladoras de Genes , Humanos
17.
Eur J Hum Genet ; 27(2): 226-234, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30254216

RESUMEN

Nonsyndromic oral clefting (NSOC) is although one of the most common congenital disorders worldwide, its underlying molecular basis remains elusive. This process has been hindered by the overwhelmingly high level of heterogeneity observed. Given that hitherto multiple loci and genes have been associated with NSOC, and that complex diseases are usually polygenic and show a considerable level of missing heritability, we used a systems genetics approach to reconstruct the NSOC network by integrating human-based physical and regulatory interactome with whole-transcriptome microarray data. We show that the network component contains 53% (23/43) of the curated NSOC-implicated gene set and displays a highly significant propinquity (P < 0.0001) between genes implicated at the genomic level and those differentially expressed at the transcriptome level. In addition, we identified bona fide candidate genes based on topological features and dysregulation (e.g. ANGPTL4), and similarly prioritised genes at GWA loci (e.g. MYC and CREBBP), thus providing further insight into the underlying heterogeneity of NSOC. Gene ontology analysis results were consistent with the NSOC network being associated with embryonic organ morphogenesis and also hinted at an aetiological overlap between NSOC and cancer. We therefore recommend this approach to be applied to other heterogeneous complex diseases to not only provide a molecular framework to unify genes which may seem as disparate entities linked to the same disease, but to also predict and prioritise candidate genes for further validation, thus addressing the missing heritability.


Asunto(s)
Encéfalo/anomalías , Labio Leporino/genética , Fisura del Paladar/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Transcriptoma , Labio Leporino/etiología , Fisura del Paladar/etiología , Humanos , Herencia Multifactorial , Mapas de Interacción de Proteínas
18.
BMC Syst Biol ; 12(1): 80, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064421

RESUMEN

BACKGROUND: Numerous centrality measures have been introduced to identify "central" nodes in large networks. The availability of a wide range of measures for ranking influential nodes leaves the user to decide which measure may best suit the analysis of a given network. The choice of a suitable measure is furthermore complicated by the impact of the network topology on ranking influential nodes by centrality measures. To approach this problem systematically, we examined the centrality profile of nodes of yeast protein-protein interaction networks (PPINs) in order to detect which centrality measure is succeeding in predicting influential proteins. We studied how different topological network features are reflected in a large set of commonly used centrality measures. RESULTS: We used yeast PPINs to compare 27 common of centrality measures. The measures characterize and assort influential nodes of the networks. We applied principal component analysis (PCA) and hierarchical clustering and found that the most informative measures depend on the network's topology. Interestingly, some measures had a high level of contribution in comparison to others in all PPINs, namely Latora closeness, Decay, Lin, Freeman closeness, Diffusion, Residual closeness and Average distance centralities. CONCLUSIONS: The choice of a suitable set of centrality measures is crucial for inferring important functional properties of a network. We concluded that undertaking data reduction using unsupervised machine learning methods helps to choose appropriate variables (centrality measures). Hence, we proposed identifying the contribution proportions of the centrality measures with PCA as a prerequisite step of network analysis before inferring functional consequences, e.g., essentiality of a node.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Análisis por Conglomerados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aprendizaje Automático no Supervisado
19.
BMC Bioinformatics ; 18(1): 370, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814324

RESUMEN

BACKGROUND: Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. RESULTS: This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. CONCLUSIONS: This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .


Asunto(s)
Neoplasias/genética , Proteínas/genética , Reparación del ADN/genética , Bases de Datos Genéticas , Humanos , Internet , Mitocondrias/genética , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Mapas de Interacción de Proteínas/genética , Proteínas/metabolismo , Interfaz Usuario-Computador
20.
Bull Math Biol ; 79(11): 2450-2473, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28849551

RESUMEN

Alcoholic liver disease (ALD) is a complex disease characterized by damages to the liver and is the consequence of excessive alcohol consumption over years. Since this disease is associated with several pathway failures, pathway reconstruction and network analysis are likely to explicit the molecular basis of the disease. To this aim, in this paper, a network medicine approach was employed to integrate interactome (protein-protein interaction and signaling pathways) and transcriptome data to reconstruct both a static network of ALD and a dynamic model for it. Several data sources were exploited to assemble a set of ALD-associated genes which further was used for network reconstruction. Moreover, a comprehensive literature mining reveals that there are four signaling pathways with crosstalk (TLR4, NF- [Formula: see text]B, MAPK and Apoptosis) which play a major role in ALD. These four pathways were exploited to reconstruct a dynamic model of ALD. The results assure that these two models are consistent with a number of experimental observations. The static network of ALD and its dynamic model are the first models provided for ALD which offer potentially valuable information for researchers in this field.


Asunto(s)
Hepatopatías Alcohólicas/etiología , Modelos Biológicos , Simulación por Computador , Humanos , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Conceptos Matemáticos , Mapas de Interacción de Proteínas , Transducción de Señal , Biología de Sistemas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...