Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson (Gott) ; 4(1): 47-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904798

RESUMEN

Long-lived states (LLSs) have lifetimes TLLS that can be much longer than longitudinal relaxation times T1. In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T1 but also the lifetimes TLLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities rLLS (i.e., the slopes of the relaxation rate constants RLLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.

2.
Sci Adv ; 8(48): eade2113, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459545

RESUMEN

In nuclear magnetic resonance (NMR), the lifetimes of long-lived states (LLSs) are exquisitely sensitive to their environment. However, the number of molecules where such states can be excited has hitherto been rather limited. Here, it is shown that LLSs can be readily excited in many common molecules that contain two or more neighboring CH2 groups. Accessing such LLSs does not require any isotopic enrichment, nor does it require any stereogenic centers to lift the chemical equivalence of CH2 protons. LLSs were excited in a variety of metabolites, neurotransmitters, vitamins, amino acids, and other molecules. One can excite LLSs in several different molecules simultaneously. In combination with magnetic resonance imaging, LLSs can reveal a contrast upon noncovalent binding of ligands to macromolecules. This suggests new perspectives to achieve high-throughput parallel drug screening by NMR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA