Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 241, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570771

RESUMEN

BACKGROUND: The global growth of pistachio production has prompted exploration into sustainable agricultural practices, on the application of humic substances such as fulvic acid in enhancing the quality of horticultural crops. The present study was carried out in Qom province, Iran, on 20 years old pistachio (Pistacia vera L. cv. Kaleh-Ghoochi) trees and investigated the impact of foliar spraying of fulvic acid at varying concentrations (1.5, 3, and 4.5 g L- 1) on the antioxidant and quality properties of pistachio. The different concentrations of fulvic acid were applied at two key stages: at the initiation of pistachio kernel formation (late June) and the development stage of pistachio kernel (late August), as well as at both time points. Following harvest at the horticulturally mature phase, various parameters, including total phenols, flavonoids, soluble proteins, soluble carbohydrate content, antioxidant capacity, and antioxidant enzyme activity, were assessed. RESULTS: Results indicated that foliar application of fulvic acid, particularly at 1.5 g L- 1 during both late June and August, effectively increased phenolic compounds (31.8%) and flavonoid content (24.53%). Additionally, this treatment also augmented antioxidant capacity and heightened the activity of catalase (CAT) (37.56%), ascorbate peroxidase (APX) (63.86%), and superoxide dismutase (SOD) (76.45%). Conversely, peroxidase (POX) (41.54%) activity was reduced in fulvic acid-treated nuts compared with controls. Moreover, the content of chlorophyll (45%) and carotenoids (46.7%) was enhanced using this organic fertilizer. In terms of mineral elements, the increment was observed in zinc (Zn) (58.23%) and potassium (K) (28.12%) amounts in treated nuts. Additionally, foliar application of fulvic acid led to elevated levels of soluble carbohydrates and proteins in treated nuts. CONCLUSIONS: In the present study, application of fulvic acid resulted in enhancement of antioxidant activity and quality traits of pistachio nut through an increase in total phenol, flavonoids, chlorophyll, carotenoids, K, Zn, and also activity of antioxidant enzymes. Therefore, use of fulvic acid emerges as a promising strategy to enhance the quality and nutritional attributes of pistachios, contributing to sustainable agricultural practices and improved crop outcomes.


Asunto(s)
Antioxidantes , Benzopiranos , Pistacia , Antioxidantes/análisis , Flavonoides/análisis , Fenoles , Carotenoides , Valor Nutritivo , Clorofila
2.
Plants (Basel) ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674545

RESUMEN

The application of natural polymer-based coatings presents a viable approach to prolong the longevity of fruits and tissue damage. This study investigates the impact of treatments involving glycine betaine (GB), chitosan (CTS), and chitosan-coated glycine betaine nanoparticles (CTS-GB NPs) on preserving the quality and reducing decay in strawberry fruits. The fruits were subjected to treatments with GB (1 mM), CTS (0.1%), CTS-GB NPs (0.1%), or distilled water at 20 °C for 5 min, followed by storage at 4 °C for 12 days. The results indicate that CTS and CTS-GB NPs treatments resulted in the highest tissue firmness, total anthocyanin content, and ascorbate peroxidase activity, while exhibiting the lowest decay percentage and weight loss, as well as reduced malondialdehyde levels at the end of storage. GB, CTS, and CTS-GB NPs treatments demonstrated elevated catalase activity and antioxidant capacity, coupled with lower electrolyte leakage and hydrogen peroxide levels. These treatments did not significantly differ from each other but were markedly different from the control. The results substantiate that CTS and CTS-GB NPs treatments effectively preserve strawberry quality and extend storage life by bolstering antioxidant capacity and mitigating free radical damage.

3.
BMC Plant Biol ; 23(1): 635, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072956

RESUMEN

BACKGROUND: Due to the important economic role of pistachio (Pistacia vera L.) the cultivation of this valuable crop has been extended. Various abiotic stresses harm the growth and performance of pistachio. Seaweed extract containing various substances such as pseudo-hormones that stimulate growth, nutritional elements, and anti-stress substances can cause more resistance to abiotic stresses, and increase the quantity and the quality of the fruit. The present study was conducted to evaluate the effect of foliar application of Ascophyllum nodosum (L.) Le Jol. seaweed extract on some biochemical traits related to abiotic stress in Pistacia vera L. cv. Kaleh-Ghoochi. The first factor of foliar spraying treatment included A. nodosum seaweed extract at four levels (0, 1, 2, and 3 g/L), and the second factor was the time of spraying solution which was done at three times (1- at the beginning of pistachio kernel growth period at the end of June, 2- at the stage of full kernel development at the end of August, and 3- Spraying in both late June and August). RESULTS: The results showed that all investigated traits were significant under the treatment of seaweed extract compared with the control. The seaweed extract concentrations had a significant effect on all traits except soluble carbohydrates, but the time of consumption of seaweed extract on soluble carbohydrates, protein, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes was significant, while had no significant effect on the rest of the traits. According to the interaction effect of time and concentration of consumption of seaweed extract, the highest values of the biochemical characters were as follows: total phenol content: 168.30 mg CAE/g DW, flavonoid content: mg CE/g DW, catalase: 12.66 µmol APX min- 1 mg- 1 protein, superoxide dismutase: 231.4 µmol APX min- 1 mg- 1 protein, and ascorbate peroxidase: 39.53 µmol APX min- 1 mg- 1 protein. CONCLUSIONS: Based on the results of this study, it seems that it is possible to use fertilizers containing A. nodosum seaweed extract with a concentration of 3 g/L in August to increase the tolerance of the pistachio cultivar "Kaleh-Ghoochi" to abiotic stresses.


Asunto(s)
Ascophyllum , Pistacia , Algas Marinas , Ascophyllum/química , Ascorbato Peroxidasas , Estrés Fisiológico , Extractos Vegetales/farmacología , Superóxido Dismutasa , Carbohidratos
4.
BMC Plant Biol ; 22(1): 555, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456938

RESUMEN

BACKGROUND: Plum (Prunus domestica L.) has a short shelf-life period due to its high respiration rate and is sensitive to low storage temperatures, which can lead to the appearance of chilling injury symptoms. In this investigation, we applied new coating treatments based on chitosan (CTS) and arginine (Arg) to plum fruit (cv. 'Stanley'). RESULTS: Fruit were treated with distilled water (control), Arg at 0.25 and 0.5 mM, CTS at 1% (w/v) or Arg-coated CTS nanoparticles (CTS-Arg NPs) at 0.5 and 1% (w/v), and then stored at 1 °C for days. The application of CTS-Arg NPs at 0.5% attenuated chilling injury, which was accompanied by accumulation of proline, reduced levels of electrolyte leakage and malondialdehyde, as well as suppressed the activity of polyphenol oxidase. Plums coated with CTS-Arg NPs (0.5%) showed higher accumulation of phenols, flavonoids and anthocyanins, due to the higher activity of phenylalanine ammonia-lyase, which in turn resulted in higher DPPH scavenging capacity. In addition, CTS-Arg NPs (0.5%) treatment delayed plum weight loss and retained fruit firmness and ascorbic acid content in comparison to control fruit. Furthermore, plums treated with CTS-Arg NPs exhibited lower H2O2 accumulation than control fruit due to higher activity of antioxidant enzymes, including CAT, POD, APX and SOD. CONCLUSIONS: The present findings show that CTS-Arg NPs (0.5%) were the most effective treatment in delaying chilling injury and prolonging the shelf life of plum fruit.


Asunto(s)
Quitosano , Nanopartículas , Prunus domestica , Especies Reactivas de Oxígeno , Frutas , Arginina , Antocianinas , Peróxido de Hidrógeno
5.
Foods ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010419

RESUMEN

Persimmon is a climacteric perishable fruit with a short storage life. In recent years, using natural compounds that are safe for human health and environment have obtained more attention in postharvest investigations. The current research was conducted to study efficacy of postharvest L-arginine treatment at 0, 0.3, and 0.6 mM in improving chilling tolerance and maintaining the nutritional quality of persimmon fruit during low-temperature storage. According to the results, the highest weight loss (4.3%), malondialdehyde (MDA (5.8 nmol g-1 FW)), and hydrogen peroxide (H2O2 (22.33 nmol g-1 FW)) was detected in control fruit. Fruit firmness was gradually decreased during storage, but it was slower in L-arginine-treated fruit. The highest tissue firmness (3.8 kg cm-2) was noted in fruit treated with 0.6 mM L-arginine. The chilling was gradually increased during storage. Fruits treated with L-arginine showed a lower chilling injury than the control fruit. Total soluble tannin compound and antioxidant enzymes activities in persimmons declined during cold storage. L-arginine treatment significantly maintained antioxidant enzymes activity, antioxidant capacity, and total soluble tannin compounds, while L-arginine had no significant impact on titratable acidity and total soluble solids. It seems that a reduction in oxidative damage and an increase in quality of persimmon during low-temperature storage manifested several defense mechanisms induced by exogenous application of L-arginine. These findings indicated that the application of L-arginine to maintain the quality and increase postharvest life of persimmon is very useful and can be applied during cold storage.

6.
Int J Biol Macromol ; 207: 965-977, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35364195

RESUMEN

The use of edible coatings can lead to significant extension of the postharvest life of fresh horticultural products through the regulation of water and gaseous exchange during storage. In this regard, nano-engineered materials are of great interest to design novel and multifunctional edible coatings and are increasingly employed. Chitosan and glycine betaine have been reported to enhance fruit tolerance to chilling stress during cold storage. The current study applied new coating treatments to plum (Prunus domestica L. cv. 'Stanley') fruit at maturity stage in a completely randomized factorial design with three replicates. Plums were treated with distilled water (control), glycine betaine (GB) at 2.5 and 5 mM, chitosan (CTS) at 1% (w/v) or glycine betaine-coated chitosan nanoparticles (CTS-GB NPs) at 0.5 and 1% (w/v) and stored at 1 °C for up to 40 days. The application of CTS-GB NPs (0.5% w/v) was the most effective treatment and induced lower electrolyte leakage, MDA and H2O2 content, and significantly alleviated chilling injury. Furthermore, this treatment remarkably increased the activity of PAL enzyme, resulting in higher levels of phenolics, flavonoids and anthocyanins content, and enhanced DPPH scavenging capacity. In addition, CTS-GB NPs treatment increased endogenous GB (9.25 mg g-1 DW) and proline (1929.29 µg g-1 FW) accumulation leading to higher activity of CAT, POD, SOD and APX enzymes. Based on the obtained results, the commercial application of CTS-GB NPs could effectively reduce chilling injury, preserve nutritional quality, and prolong the storage potential and shelf life of plum fruit.


Asunto(s)
Quitosano , Nanopartículas , Prunus domestica , Antocianinas/farmacología , Betaína/farmacología , Quitosano/farmacología , Frutas/química , Peróxido de Hidrógeno/farmacología , Agua/análisis
7.
J Food Biochem ; 45(4): e13633, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33528052

RESUMEN

The impact of chitosan (CH) and potassium sorbate (PS) on quality attributes of pomegranate fruits (cv. Malas e Saveh) was evaluated during 90 days of storage at 4°C and 85%-90% relative humidity. The CH as well as the combined treatments (CH + PS) were effective in decreasing the chilling injury (CI) symptoms, electrolyte leakage, and malondialdehyde contents of fruit peel. Furthermore, CH, PS, and CH + PS treatments enhanced the activity of DPPH radical scavenging, and antioxidant enzymes of arils, and preserved the ascorbic acid content at high levels during the storage period. Fruits treated with CH1% + PS10% and CH2% + PS10% exhibited the lowest decay incidence and weight loss. Higher content of arils' phenols, flavonoids, and anthocyanin was observed in treated-fruits as a result of more activity of phenylalanine ammonia-lyase (PAL) and low activity of polyphenol oxidase (PPO). Consequently, CH + PS showed positive effects on the storage life of pomegranate fruits in terms of CI, decay incidence, and also nutritional values. PRACTICAL APPLICATIONS: Enhancement of chilling tolerance of pomegranate fruits during cold storage condition is a crucial issue. Application of CH coating alone or in combination with potassium sorbate could decrease the CI symptoms and preserved peel cell membrane integrity by maintaining electrolyte leakage (EL) and malondialdehyde in lower levels. Also, these treatments prevent weight loss and decay incidence in peel, and increase the activity of phenylpropanoid pathway and antioxidant systems in arils. All in all, usage of CH edible coating (2%) plus PS (10%) illustrated high efficiency in alleviating CI, decay incidence, and preserving nutritional quality of pomegranate fruits.


Asunto(s)
Quitosano , Granada (Fruta) , Conservación de Alimentos , Frutas , Ácido Sórbico
8.
Food Technol Biotechnol ; 58(4): 433-444, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33505206

RESUMEN

RESEARCH BACKGROUND: Low temperature storage causes chilling injury in plum (Prunus domestica L.) fruits. Consequently, any treatments with beneficial effects against these symptoms would achieve attention. For this purpose, phenylalanine treatments were applied on 'Stanley' plum fruits. The main purpose of the present study is to investigate the influence of the exogenous application of phenylalanine on fruit quality, chilling tolerance, and antioxidant capacity of 'Stanley' plums during cold storage. EXPERIMENTAL APPROACH: Phenylalanine at different concentrations was applied on 'Stanley' plums. Following phenylalanine application, plums were cold stored. Chilling injury, antioxidant capacity, electrolyte leakage, malondialdehyde, proline and internal contents of anthocyanin, flavonoids, phenols, ascorbic acid and some antioxidant enzymes were assessed. RESULTS AND CONCLUSIONS: Phenylalanine treatment significantly alleviated chilling injury in plum fruits by enhancing antioxidant capacity and increasing the activity of phenylalanine ammonia lyase enzyme (PAL). Phenylalanine-treated fruits had higher mass fractions of ascorbic acid, anthocyanins, flavonoids and phenols, as well as a higher total antioxidant activity than the control fruits during low temperature storage. Phenylalanine at 7.5 mM was the most effective treatment in enhancing the activity of PAL, the accumulation of phenolic compounds and in reducing the severity of chilling injury. Treatments delayed mass loss and maintained fruit firmness. In addition, the application of 7.5 mM phenylalanine improved the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase), decreased the accumulation of hydrogen peroxide, and increased the endogenous content of proline. Moreover, phenylalanine maintained membrane integrity, manifested by a reduced electrolyte leakage and malondialdehyde accumulation. NOVELTY AND SCIENTIFIC CONTRIBUTION: In the current study, chilling injury had a positive correlation with the activities of PAL and antioxidant enzymes. However, negative correlations were observed between the chilling injury and ascorbic acid mass fraction, and antioxidant capacity. Considering the results, phenylalanine treatment could be an encouraging approach to alleviate the severity of chilling injury and thus preserve nutritional quality of plums during low temperature storage.

9.
J Sci Food Agric ; 100(5): 2130-2135, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31884686

RESUMEN

BACKGROUND: Pistachio fruits suffer from postharvest decay, caused by Aspergillus flavus. This results in aflatoxin B1 (AFB1 ) accumulation in kernels, which is hazardous for human health due to its carcinogenic activity. In this study, the mechanism used by exogenous ß-aminobutyric acid (BABA) treatment for attenuating Aspergillus decay, minimizing aflatoxin B1 (AFB1 ) accumulation, and maintaining nutritional quality in fresh-in-hull pistachio kernels, infected by A. flavus during storage at 25 °C for 18 days, was investigated. RESULT: Results of an in vivo assay showed that the spore germination and germ tube elongation of A. flavus was repressed by BABA treatment at 7.5 mM. Aspergillus decay accompanied by AFB1 accumulation was also minimized in fresh-in-hull pistachio kernels treated with BABA at 7.5 mM and infected by A. flavus. Fresh-in-hull pistachio kernels, infected by A. flavus, treated with BABA at 7.5 mM, also exhibited higher phenol and flavonoid accumulation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity accompanied by higher phenylalanine ammonia lyase (PAL) enzyme activity. CONCLUSION: Promoting phenylpropanoid pathway activity with higher PAL enzyme activity in fresh-in-hull pistachio kernels treated with BABA may not only reduce Aspergillus decay in kernels by cell wall fortification but also may be favorable for maintaining the kernels' nutritional quality through its effects on ROS scavenging capacity. As oxidative stress, represented by ROS accumulation, is responsible for A. flavus growth and AFB1 accumulation, higher phenol and flavonoid accumulation in fresh-in-hull pistachio kernels treated with BABA may be beneficial for attenuating Aspergillus decay and minimizing AFB1 accumulation. © 2019 Society of Chemical Industry.


Asunto(s)
Aflatoxina B1/análisis , Aminobutiratos/farmacología , Aspergillus flavus/efectos de los fármacos , Pistacia/efectos de los fármacos , Pistacia/microbiología , Aspergillus flavus/metabolismo , Análisis de los Alimentos , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Frutas/química , Frutas/efectos de los fármacos , Frutas/microbiología , Germinación/efectos de los fármacos , Valor Nutritivo , Pistacia/química
10.
Food Chem ; 275: 549-556, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724232

RESUMEN

In the present study, the mechanisms employed by exogenous melatonin applying for conferring chilling tolerance in tomato fruits during storage at 4 °C for 28 days were investigated. Conferring chilling tolerance in tomato fruits in response to exogenous melatonin applying at 100 µM may arise from upregulating SlZAT2/6/12 giving rise to triggering CBF1 gene expression. Employing higher arginine pathway activity in tomato fruits by exogenous melatonin applying demonstrating by higher endogenous polyamines accumulation arising from higher ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) genes expression and enzymes activity, higher endogenous proline accumulation arising from higher pyroline 5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) genes expression and enzymes activity accompanying by lower proline dehydrogenase (PDH) gene expression and enzyme activity and higher endogenous nitric oxide (NO) accumulation arising from higher nitric oxide synthase (NOS) gene expression and enzyme activity may be responsible for keeping safe membrane integrity.


Asunto(s)
Arginina/metabolismo , Frío , Frutas/efectos de los fármacos , Melatonina/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Regulación hacia Arriba/efectos de los fármacos , Almacenamiento de Alimentos , Frutas/genética , Frutas/metabolismo , Frutas/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...