Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(9): e19658, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809727

RESUMEN

BCS class II drugs exhibit low aqueous solubility and high permeability. Such drugs often have an incomplete or erratic absorption profile. This study aimed to predict the effects of ß-cyclodextrin (ßCD) and different hydrophilic polymers (poloxamer 188 (PXM-188), polyvinyl pyrrolidone (PVP) and soluplus (SOLO)) on the saturated solubility and dissolution profile of hydrophobic model drug rivaroxaban (RIV). Binary inclusion complex with ßCD were prepared by kneading and solvent evaporation method, at drug to cyclodextrin weight molar ratios of 1:1, 1:2, and 1:4. Saturated solubility of the hydrophobic model moiety was evaluated with ßCD to explore the increment in saturated solubility. Dissolution test was carried out to assess the drug release from the produced binary inclusion complex in the aqueous medium. Solid state analysis was performed using Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) techniques. When compared to pure drug, the binary complex (Drug: ßCD at molar ratio of 1:2 w/w) demonstrated the best performance in terms of enhanced solubility and drug release. Furthermore, ternary inclusion complex was prepared with hydrophilic polymers SOLO, PVP K-30 and PXM-188 at 0.5%,1%,2.5%,5% and 10% w/w to optimized binary formulation RIV:ßCD (1:2) prepared by kneading (KN) and solvent evaporation (S.E) method. The findings demonstrated that among ternary formulations (1:2 Drug: ßCD: SOLO 10% S.E) manifested greatest improvement in saturated solubility and dissolution rate. Results of solubility enhancement and improvement in dissolution profile of model drug by ternary inclusion complexation were also supported by FTIR, DSC, XRD, and SEM analysis. So, it can be concluded that the ternary inclusion systems were more effective compared to the binary combinations in improving solubility as well as dissolution of hydrophobic model drug rivaroxaban.

2.
J Med Life ; 15(3): 328-335, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35449993

RESUMEN

Antimicrobials are widely used to treat bacteria, viruses, fungi, and protozoa. Therefore, research and development of newer types of antimicrobials are important. Antimicrobial resistance has emerged as a major challenge to the healthcare system, although various alternative antimicrobials have been proposed. However, none of these show consistent and comparable efficacy to antimicrobials in clinical trials. More recently, nanoparticles have emerged as a potential solution to antimicrobial agents to overcome antimicrobial resistance. This article revisits and updates applications of various types of nanoparticles for the delivery of antimicrobial agents and their characterization. Though nanoparticle technology has some limitations, it provides an innovative approach to pharmaceutical technology. Furthermore, nanoparticles offer a variety of advantages, such as enhancement of solubility and permeation, leading to better efficacy. In this article, approaches commonly employed to improve antimicrobial therapy are discussed. These approaches have advantages and applications and provide a broader opportunity for pharmaceutical scientists to choose the proper method per the desired outcome.


Asunto(s)
Antiinfecciosos , Nanopartículas , Antibacterianos , Antiinfecciosos/uso terapéutico , Bacterias , Sistemas de Liberación de Medicamentos , Humanos
3.
Cells ; 10(9)2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34572054

RESUMEN

Glimepiride (GMP), an oral hypoglycemic agent is extensively employed in the treatment of type 2 diabetes. Transdermal delivery of GMP has been widely investigated as a promising alternative to an oral approach but the delivery of GMP is hindered owing to its low solubility and permeation. The present study was designed to formulate topical nanoemulgel GMP system and previously reported solubility enhanced glimepiride (GMP/ßCD/GEL-44/16) in combination with anti-diabetic oil to enhance the hypoglycemic effect. Nanoemulsions were developed using clove oil, Tween-80, and PEG-400 and were gelled using xanthan gum (3%, w/w) to achieve the final nanoemulgel formulations. All of the formulations were evaluated in terms of particle size, zeta potential, pH, conductivity, viscosity, and in vitro skin permeation studies. In vivo hypoglycemic activity of the optimized nanoemulgel formulations was evaluated using a streptozocin-induced diabetes model. It was found that a synergistic combination of GMP with clove oil improved the overall drug permeation across the skin membrane and the hypoglycemic activity of GMP. The results showed that GMP/ßCD/GEL-44/16-loaded nanoemulgel enhanced the in vitro skin permeation and improved the hypoglycemic activity in comparison with pure and marketed GMP. It is suggested that topical nano emulsion-based GMP gel and GMP/ßCD/GEL-44/16 could be an effective alternative for oral therapy in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Emulsiones , Hipoglucemiantes/farmacología , Nanopartículas/administración & dosificación , Piel/efectos de los fármacos , Compuestos de Sulfonilurea/farmacología , Administración Cutánea , Animales , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/patología , Masculino , Nanopartículas/química , Permeabilidad , Ratas , Ratas Wistar , Pruebas de Irritación de la Piel , Solubilidad , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...