Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 10(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756088

RESUMEN

BACKGROUND: There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals. STUDY DESIGN: The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days. RESULTS: DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM. CONCLUSIONS: Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.

2.
Plants (Basel) ; 12(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37514292

RESUMEN

In the modern world we are constantly bombarded by environmental and natural stimuli that can result in oxidative stress. Antioxidant molecules and enzymes help the human body scavenge reactive oxygen species and prevent oxidative damage. Most organisms possess intrinsic antioxidant activity, but also benefit from the consumption of antioxidants from their diet. Leafy green vegetables such as spinach are a well-researched rich source of dietary antioxidant molecules. However, plant cell walls are difficult to digest for many individuals and the bio-accessibility of nutrients and antioxidants from these sources can be limited by the degree of digestion and assimilation. Through a specific enzymatic process, Solarplast® contains organic spinach protoplasts without the cell wall, which may facilitate higher yield and efficacy of beneficial antioxidant molecules. In this study, analytical techniques coupled to in vitro bioassays were used to determine the potential antioxidant activity of Solarplast® and determine its antioxidant enzymatic capabilities. Solarplast® demonstrated superior antioxidant activity when compared to frozen spinach leaves in TOC, FRAP and TEAC antioxidant assays. Several antioxidant enzymes were also increased in Solarplast®, when compared to frozen spinach. As a functional readout, Solarplast® attenuated hydrogen peroxide-, ethanol- and acetaminophen-induced increases in oxidative stress and cytotoxicity in both intestinal (HT-29) and liver (HepG2) cell lines. These findings suggest that Solarplast® may represent a non-GMO, plant-based food supplement to help reduce oxidative stress in the human body.

3.
Front Microbiol ; 14: 1125616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113219

RESUMEN

Exposure to diverse environmental pollutants and food contaminants is ever-increasing. The risks related to the bioaccumulation of such xenobiotics in the air and food chain have exerted negative effects on human health, such as inflammation, oxidative stress, DNA damage, gastrointestinal disorders, and chronic diseases. The use of probiotics is considered an economical and versatile tool for the detoxification of hazardous chemicals that are persistent in the environment and food chain, potentially for scavenging unwanted xenobiotics in the gut. In this study, Bacillus megaterium MIT411 (Renuspore®) was characterized for general probiotic properties including antimicrobial activity, dietary metabolism, and antioxidant activity, and for the capacity to detoxify several environmental contaminants that can be found in the food chain. In silico studies revealed genes associated with carbohydrate, protein and lipid metabolism, xenobiotic chelation or degradation, and antioxidant properties. Bacillus megaterium MIT411 (Renuspore®) demonstrated high levels of total antioxidant activities, in addition to antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Campylobacter jejuni in vitro. The metabolic analysis demonstrated strong enzymatic activity with a high release of amino acids and beneficial short-chain fatty acids (SCFAs). Moreover, Renuspore® effectively chelated the heavy metals, mercury and lead, without negatively impacting the beneficial minerals, iron, magnesium, or calcium, and degraded the environmental contaminants, nitrite, ammonia, and 4-Chloro-2-nitrophenol. These findings suggest that Renuspore® may play a beneficial role in supporting gut health metabolism and eliminating unwanted dietary contaminants.

4.
Microorganisms ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36838205

RESUMEN

Spore-forming bacteria of the Bacillus genus have demonstrated potential as probiotics for human use. Bacillus clausii have been recognized as efficacious and safe agents for preventing and treating diarrhea in children and adults, with pronounced immunomodulatory properties during several in vitro and clinical studies. Herein, we characterize the novel strain of B. clausii CSI08 (Munispore®) for probiotic attributes including resistance to gastric acid and bile salts, the ability to suppress the growth of human pathogens, the capacity to assimilate wide range of carbohydrates and to produce potentially beneficial enzymes. Both spores and vegetative cells of this strain were able to adhere to a mucous-producing intestinal cell line and to attenuate the LPS- and Poly I:C-triggered pro-inflammatory cytokine gene expression in HT-29 intestinal cell line. Vegetative cells of B. clausii CSI08 were also able to elicit a robust immune response in U937-derived macrophages. Furthermore, B. clausii CSI08 demonstrated cytoprotective effects in in vitro cell culture and in vivo C. elegans models of oxidative stress. Taken together, these beneficial properties provide strong evidence for B. clausii CSI08 as a promising potential probiotic.

5.
Front Microbiol ; 14: 1302480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274758

RESUMEN

Introduction: Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods: In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results: B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion: Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.

6.
Brain Behav Immun ; 106: 115-126, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995237

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Ansiedad , Arginina Vasopresina , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Clostridiales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos , Oxitocina , ARN Mensajero/metabolismo
7.
Neurosci Biobehav Rev ; 135: 104555, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122781

RESUMEN

There has been a significant increase in Caesarean section (C-section) births worldwide over the past two decades and although it can be a life-saving procedure, the enduring effects on host physiology are now undergoing further scrutiny. Indeed, epidemiological data have linked C-section birth with multiple immune, metabolic and neuropsychiatric diseases. Birth by C-section is known to alter the colonisation of the neonatal gut microbiota (with C-section delivered infants lacking vaginal microbiota associated with passing along the birth canal), which in turn can impact the development and maintenance of many important biological systems. Appropriate animal models are key to disentangling the role of missing microbes in brain health and disease in C-section births. In this review of preclinical studies, we interrogate the effects of C-section birth on the development (and maintenance) of several biological systems and we discuss the involvement of the gut microbiome on C-section-related alterations.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Cesárea , Parto Obstétrico , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Modelos Animales , Embarazo
8.
Neuroscience ; 480: 117-130, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774710

RESUMEN

The endocannabinoid system within the periaqueductal grey (PAG) has been implicated in fear-conditioned analgesia (FCA), the profound suppression of pain upon re-exposure to a context previously paired with an aversive stimulus. Since the endocannabinoid and nociceptive systems exhibit sexual dimorphism, the aim of the present study was to assess possible sex differences in the expression of FCA, fear in the presence of nociceptive tone, and associated sex-dependent alterations in the endocannabinoid system within the PAG. Male and female Sprague-Dawley rats received footshock (10 × 1s; 0.4 mA; every 60 s) or no-footshock in a conditioning arena and 23.5 h later received intraplantar injection of formalin (2.5%) under brief isoflourane anaesthetic into the right hind paw. Nociceptive and fear-related behaviours were assessed 30 min later. Levels of endocannabinoids, N-acylethanolamines and neurotransmitters in the PAG were assessed by LC-MS/MS and expression of endocannabinoid system-related proteins by Western immunoblotting. Male, but not female, rats exhibited robust FCA and greater expression of fear-related behaviours than females. Fear-conditioned formalin-treated males, but not females, had higher levels of N-oleoylethanolamine (OEA) and γ-aminobutyric acid (GABA) in the PAG, compared with non-fear-conditioned controls. There was no effect of fear conditioning on the levels of FAAH or CB1 receptor expression (CB1R) in the PAG of male or female formalin-treated rats. Non-fear-conditioned females had higher levels of CB1R and PPARγ expression than non-fear-conditioned male counterparts. In summary, our results provide evidence of sexual dimorphism in the expression of FCA and fear-related behaviours, and associated alterations in components of the endocannabinoid system and GABA within the PAG.


Asunto(s)
Analgesia , Endocannabinoides , Animales , Cromatografía Liquida , Condicionamiento Psicológico , Miedo , Femenino , Masculino , Dolor , Sustancia Gris Periacueductal , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
9.
Mol Nutr Food Res ; 66(3): e2100665, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34851032

RESUMEN

SCOPE: Increasing scientific evidence is validating the use of dietary strategies to support and improve brain health throughout the lifespan, with tailored nutritional interventions catering for specific life stages. Dietary phospholipid supplementations in early life and adulthood are shown to alleviate some of the behavioral consequences associated with chronic stress. This study aims to explore the protective effects of a tailored phospholipid-enriched buttermilk on behavioral and endocrine responses induced by chronic psychosocial stress in adulthood, and to compare these effects according to the life stage at which the supplementation is started. METHODS AND RESULTS: A novel developed phospholipid-enriched dairy product is assessed for its effects on social, anxiety- and depressive-like behaviors, as well as the stress response and cognitive performance following chronic psychosocial stress in C57BL/6J mice, with supplementation beginning in adulthood or early life. Milk phospholipid supplementation from birth protects adult mice against chronic stress-induced changes in endocrine response to a subsequent acute stressor and reduces innate anxiety-like behavior in non-stressed animals. When starting in adulthood, the dietary intervention reverses the anxiety-like phenotype caused by chronic stress exposure. CONCLUSION: Dairy-derived phospholipids exert differential protective effects against chronic psychosocial stress depending on the targeted life stage and duration of the dietary supplementation.


Asunto(s)
Leche , Estrés Psicológico , Animales , Ansiedad/etiología , Ansiedad/prevención & control , Conducta Animal , Longevidad , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/farmacología
10.
Front Microbiol ; 13: 1101144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713219

RESUMEN

Bacillus subtilis DE111® is a safe, well-tolerated commercially available spore-forming probiotic that has been clinically shown to support a healthy gut microbiome, and to promote digestive and immune health in both adults and children. Recently it was shown that this spore-forming probiotic was capable of germinating in the gastrointestinal tract as early as 3 h after ingestion. However, a better understanding of the mechanisms involved in the efficacy of DE111® is required. Therefore, the present investigation was undertaken to elucidate the functional properties of DE111® through employing a combination of in vitro functional assays and genome analysis. DE111® genome mining revealed the presence of several genes encoding acid and stress tolerance mechanisms in addition to adhesion proteins required to survive and colonize harsh gastrointestinal environment including multi subunit ATPases, arginine deiminase (ADI) pathway genes (argBDR), stress (GroES/GroEL and DnaK/DnaJ) and extracellular polymeric substances (EPS) biosynthesis genes (pgsBCA). DE111® harbors several genes encoding enzymes involved in the metabolism of dietary molecules (protease, lipases, and carbohyrolases), antioxidant activity and genes associated with the synthesis of several B-vitamins (thiamine, riboflavin, pyridoxin, biotin, and folate), vitamin K2 (menaquinone) and seven amino acids including five essential amino acids (threonine, tryptophan, methionine, leucine, and lysine). Furthermore, a combined in silico analysis of bacteriocin producing genes with in vitro analysis highlighted a broad antagonistic activity of DE111® toward numerous urinary tract, intestinal, and skin pathogens. Enzymatic activities included proteases, peptidases, esterase's, and carbohydrate metabolism coupled with metabolomic analysis of DE111® fermented ultra-high temperature milk, revealed a high release of amino acids and beneficial short chain fatty acids (SCFAs). Together, this study demonstrates the genetic and phenotypic ability of DE111® for surviving harsh gastric transit and conferring health benefits to the host, in particular its efficacy in the metabolism of dietary molecules, and its potential to generate beneficial SCFAs, casein-derived bioactive peptides, as well as its high antioxidant and antimicrobial potential. Thus, supporting the use of DE111® as a nutrient supplement and its pottential use in the preparation of functional foods.

11.
Neurobiol Pain ; 9: 100061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665479

RESUMEN

Within the human gut, we each harbour a unique ecosystem represented by trillions of microbes that contribute to our health and wellbeing. These gut microbiota form part of a complex network termed the microbiota-gut-brain axis along with the enteric nervous system, sympathetic and parasympathetic divisions of the autonomic nervous system, and neuroendocrine and neuroimmune components of the central nervous system. Through endocrine, immune and neuropeptide/neurotransmitter systems, the microbiota can relay information about health status of the gut. This in turn can profoundly impact neuronal signalling not only in the periphery, but also in the brain itself and thus impact on emotional systems and behavioural responses. This may be true for pain, as the top-down facilitation or inhibition of pain processing occurs at a central level, while ascending afferent nociceptive information from the viscera and systemic areas travel through the periphery and spinal cord to the brain. The endogenous cannabinoid receptors are ubiquitously expressed throughout the gut, periphery and in brain regions associated with pain responding, and represent targets for endogenous and exogenous manipulation. In this review, we will focus on the potential role of the endogenous cannabinoids in modulating microbiota-driven changes in peripheral and central pain processing. We also focus on the overlap in mechanisms whereby commensal gut microbiota and endocannabinoid ligands can regulate inflammation and further aim to exploit our understanding of their role in microbiota-gut-brain axis communication in pain processing.

12.
EBioMedicine ; 63: 103176, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33349590

RESUMEN

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Asunto(s)
Bifidobacterium longum/fisiología , Resistencia a la Enfermedad , Interacciones Microbiota-Huesped , Obesidad/metabolismo , Adiposidad , Corticoesteroides/sangre , Animales , Biomarcadores , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Metabolismo Energético , Glucosa/metabolismo , Leptina/sangre , Masculino , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/etiología , Probióticos , Roedores , Investigación Biomédica Traslacional
13.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223517

RESUMEN

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Asunto(s)
Cognición/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Vitamina A , Animales , Eje Cerebro-Intestino/efectos de los fármacos , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vitamina A/administración & dosificación , Vitamina A/farmacología
14.
Neurobiol Stress ; 13: 100252, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344707

RESUMEN

Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.

15.
Eur Neuropsychopharmacol ; 41: 152-159, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33191074

RESUMEN

The gut microbiota modulates brain physiology, development, and behavior and has been implicated as a key regulator in several central nervous system disorders. Its effect on the metabolic coupling between neurons and astrocytes has not been studied to date, even though this is an important component of brain energy metabolism and physiology and it is perturbed in neurodegenerative and cognitive disorders. In this study, we have investigated the mRNA expression of 6 genes encoding proteins implicated in the astrocyte-neuron lactate shuttle (Atp1a2, Ldha, Ldhb, Mct1, Gys1, Pfkfb3), in relation to different gut microbiota manipulations, in the mouse brain hippocampus, a region with critical functions in cognition and behavior. We have discovered that Atp1a2 and Pfkfb3, encoding the ATPase, Na+/K+ transporting, alpha 2 sub-unit, respectively and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, two genes predominantly expressed in astrocytes, were upregulated in the hippocampus after microbial colonization of germ-free mice for 24 h, compared with conventionally raised mice. Pfkfb3 was also upregulated in germ-free mice compared with conventionally raised mice, while an increase in Atp1a2 expression in germ-free mice was confirmed only at the protein level by Western blot. In a separate cohort of mice, Atp1a2 and Pfkfb3 mRNA expression was upregulated in the hippocampus following 6-week dietary supplementation with prebiotics (fructo- and galacto-oligosaccharides) in an animal model of chronic psychosocial stress. To our knowledge, these findings are the first to report an influence of the gut microbiota and prebiotics on mRNA expression of genes implicated in the metabolic coupling between neurons and astrocytes.


Asunto(s)
Astrocitos/metabolismo , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes/fisiología , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Metabolismo Energético/fisiología , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Prebióticos/administración & dosificación
16.
Curr Biol ; 30(19): 3761-3774.e6, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32822606

RESUMEN

Birth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown. Here, we demonstrated that birth by C-section results in marked but transient changes in microbiome composition in the mouse, in particular, the abundance of Bifidobacterium spp. was depleted in early life. Mice born by C-section had enduring social, cognitive, and anxiety deficits in early life and adulthood. Interestingly, we found that these specific behavioral alterations induced by the mode of birth were also partially corrected by co-housing with vaginally born mice. Finally, we showed that supplementation from birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that stimulates the growth of bifidobacteria, reverses selective behavioral alterations in C-section mice. Taken together, our data link the gut microbiota to behavioral alterations in C-section-born mice and suggest the possibility of developing adjunctive microbiota-targeted therapies that may help to avert long-term negative consequences on behavior associated with C-section birth mode.


Asunto(s)
Cesárea/efectos adversos , Microbioma Gastrointestinal/fisiología , Enfermedades del Sistema Nervioso/microbiología , Animales , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/metabolismo , Cesárea/psicología , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Ratones , Embarazo
17.
Annu Rev Psychol ; 71: 49-78, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31567042

RESUMEN

Depression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis. More recently, the gut microbiota has emerged as an important regulator of brain and behavior and also has been linked to depression. However, how this holy trinity of risk factors interact to maintain physiological homeostasis in the brain and body is not fully understood. In this review, we integrate the available data from animal and human studies on these three factors in the etiology and progression of depression. We also focus on the processes by which this microbiota-immune-stress matrix may influence centrally mediated events and on possible therapeutic interventions to correct imbalances in this triune.


Asunto(s)
Trastorno Depresivo , Microbioma Gastrointestinal , Inflamación , Estrés Psicológico , Animales , Trastorno Depresivo/etiología , Trastorno Depresivo/inmunología , Trastorno Depresivo/microbiología , Trastorno Depresivo/terapia , Humanos , Inflamación/complicaciones , Estrés Psicológico/complicaciones
18.
Eur J Neurosci ; 51(6): 1419-1427, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31663195

RESUMEN

Obsessive-compulsive disorder (OCD) is a psychiatric illness that significantly impacts affected patients and available treatments yield suboptimal therapeutic response. Recently, the role of the gut-brain axis (GBA) in psychiatric illness has emerged as a potential target for therapeutic exploration. However, studies concerning the role of the GBA in OCD are limited. To investigate whether a naturally occurring obsessive-compulsive-like phenotype in a rodent model, that is large nest building in deer mice, is associated with perturbations in the gut microbiome, we investigated and characterised the gut microbiota in specific-pathogen-free bred and housed large (LNB) and normal (NNB) nest-building deer mice of both sexes (n = 11 per group, including three males and eight females). Following baseline characterisation of nest-building behaviour, a single faecal sample was collected from each animal and the gut microbiota analysed. Our results reveal the overall microbial composition of LNB animals to be distinctly different compared to controls (PERMANOVA p < .05). While no genera were found to be significantly differentially abundant after correcting for multiple comparisons, the normal phenotype showed a higher loading of Prevotella and Anaeroplasma, while the OC phenotype demonstrated a higher loading of Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella (cut-off threshold for loading at 0.2 in either the first or second component of the PCA). These findings not only provide proof-of-concept for continued investigation of the GBA in OCD, but also highlight a potential underlying aetiological association between alterations in the gut microbiota and the natural development of obsessive-compulsive-like behaviours.


Asunto(s)
Microbioma Gastrointestinal , Trastorno Obsesivo Compulsivo , Animales , Encéfalo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Peromyscus
19.
Neuropsychobiology ; 79(1): 50-62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31726457

RESUMEN

There is mounting evidence that the trillions of microbes that inhabit our gut are a substantial contributing factor to mental health and, equally, to the progression of neuropsychiatric disorders. The extraordinary complexity of the gut ecosystem, and how it interacts with the intestinal epithelium to manifest physiological changes in the brain to influence mood and behaviour, has been the subject of intense scientific scrutiny over the last 2 decades. To further complicate matters, we each harbour a unique microbiota community that is subject to change by a number of factors including diet, exercise, stress, health status, genetics, medication, and age, amongst others. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the gastrointestinal (GI) microbiota, immune cells, gut tissue, glands, the autonomic nervous system (ANS), and the brain that communicate in a complex multidirectional manner through a number of anatomically and physiologically distinct systems. Long-term perturbations to this homeostatic environment may contribute to the progression of a number of disorders by altering physiological processes including hypothalamic-pituitary-adrenal axis activation, neurotransmitter systems, immune function, and the inflammatory response. While an appropriate, co-ordinated physiological response, such as an immune or stress response, is necessary for survival, a dysfunctional response can be detrimental to the host, contributing to the development of a number of central nervous system disorders.


Asunto(s)
Encéfalo , Microbioma Gastrointestinal , Sistema Hipotálamo-Hipofisario , Inflamación , Trastornos Mentales , Estrés Psicológico , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/microbiología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Trastornos Mentales/inmunología , Trastornos Mentales/metabolismo , Trastornos Mentales/microbiología , Trastornos Mentales/terapia , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo , Estrés Psicológico/microbiología
20.
Front Neuroendocrinol ; 56: 100815, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805290

RESUMEN

Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.


Asunto(s)
Encéfalo/fisiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Caracteres Sexuales , Animales , Bacterias/clasificación , Bacterias/metabolismo , Femenino , Hormonas Esteroides Gonadales/fisiología , Humanos , Masculino , Trastornos Mentales/epidemiología , Trastornos Mentales/microbiología , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...