Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38558964

RESUMEN

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.

2.
Sci Rep ; 14(1): 6513, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499615

RESUMEN

Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.


Asunto(s)
Exactitud de los Datos , Magnetoencefalografía , Adulto , Animales , Humanos , Decapodiformes , Encéfalo/fisiología
3.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37420622

RESUMEN

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.


Asunto(s)
Magnetoencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Magnetoencefalografía/métodos , Neuroimagen Funcional , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
4.
Neuroimage ; 274: 120157, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149237

RESUMEN

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.


Asunto(s)
Magnetoencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Magnetoencefalografía/métodos , Movimiento , Campos Magnéticos , Fenómenos Electromagnéticos , Encéfalo/fisiología
5.
Neuroimage ; 271: 120024, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918138

RESUMEN

Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.


Asunto(s)
Encéfalo , Magnetoencefalografía , Humanos , Niño , Magnetoencefalografía/métodos , Encéfalo/fisiología , Campos Magnéticos , Relación Señal-Ruido
6.
Ann N Y Acad Sci ; 1517(1): 107-124, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36065147

RESUMEN

Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.


Asunto(s)
Neuroimagen Funcional , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Encéfalo/fisiología
7.
Sci Rep ; 12(1): 13561, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945239

RESUMEN

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.


Asunto(s)
Neuroimagen Funcional , Magnetoencefalografía , Encéfalo , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Magnetoencefalografía/métodos
8.
Trends Neurosci ; 45(8): 621-634, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779970

RESUMEN

Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.


Asunto(s)
Neuroimagen Funcional , Magnetoencefalografía , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Magnetoencefalografía/métodos
9.
Neuroimage ; 252: 119027, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217205

RESUMEN

Optically-pumped magnetometers (OPMs) are an established alternative to superconducting sensors for magnetoencephalography (MEG), offering significant advantages including flexibility to accommodate any head size, uniform coverage, free movement during scanning, better data quality and lower cost. However, OPM sensor technology remains under development; there is flexibility regarding OPM design and it is not yet clear which variant will prove most effective for MEG. Most OPM-MEG implementations have either used single-axis (equivalent to conventional MEG) or dual-axis magnetic field measurements. Here we demonstrate use of a triaxial OPM formulation, able to characterise the full 3D neuromagnetic field vector. We show that this novel sensor is able to characterise magnetic fields with high accuracy and sensitivity that matches conventional (dual-axis) OPMs. We show practicality via measurement of biomagnetic fields from both the heart and the brain. Using simulations, we demonstrate how triaxial measurement offers improved cortical coverage, especially in infants. Finally, we introduce a new 3D-printed child-friendly OPM-helmet and demonstrate feasibility of triaxial measurement in a five-year-old. In sum, the data presented demonstrate that triaxial OPMs offer a significant improvement over dual-axis variants and are likely to become the sensor of choice for future MEG systems, particularly for deployment in paediatric populations.


Asunto(s)
Magnetoencefalografía , Magnetometría , Encéfalo , Preescolar , Diseño de Equipo , Estudios de Factibilidad , Humanos
10.
IEEE Trans Biomed Eng ; 69(2): 528-536, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34324421

RESUMEN

BACKGROUND: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, which manifest as low frequency artefacts in MEG data. OBJECTIVE: We model the spatial variation in the magnetic field and use the model to predict the movement artefact found in a dataset. METHODS: We demonstrate a method for modelling this field with a triaxial magnetometer, then show that we can use the same technique to predict the movement artefact in a real OPM-based MEG (OP-MEG) dataset. RESULTS: Using an 86-channel OP-MEG system, we found that this modelling method maximally reduced the power spectral density of the data by 27.8 ± 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. CONCLUSION: The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. SIGNIFICANCE: Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the measurement of low-frequency brain activity during natural participant movement.


Asunto(s)
Campos Magnéticos , Magnetoencefalografía , Artefactos , Encéfalo , Humanos , Magnetoencefalografía/métodos
11.
Contemp Phys ; 63(3): 161-179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38463461

RESUMEN

Non-invasive imaging has transformed neuroscientific discovery and clinical practice, providing a non-invasive window into the human brain. However, whilst techniques like MRI generate ever more precise images of brain structure, in many cases, it's the function within neural networks that underlies disease. Here, we review the potential for quantum-enabled magnetic field sensors to shed light on such activity. Specifically, we describe how optically pumped magnetometers (OPMs) enable magnetoencephalographic (MEG) recordings with higher accuracy and improved practicality compared to the current state-of-the-art. The paper is split into two parts: first, we describe the work to date on OPM-MEG, detailing why this novel biomagnetic imaging technique is proving disruptive. Second, we explain how fundamental physics, including quantum mechanics and electromagnetism, underpins this developing technology. We conclude with a look to the future, outlining the potential for OPM-MEG to initiate a step change in the understanding and management of brain health.

12.
BMC Biol ; 19(1): 158, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376215

RESUMEN

BACKGROUND: Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-quality brain signals should be captured non-invasively. Magnetoencephalography (MEG) is a potent candidate but currently requires costly and confining recording hardware. The recently developed optically pumped magnetometers (OPMs) promise to overcome this limitation, but are currently untested in the context of neural interfacing. RESULTS: In this work, we show that OPM-MEG allows robust single-trial analysis which we exploited in a real-time 'mind-spelling' application yielding an average accuracy of 97.7%. CONCLUSIONS: This shows that OPM-MEG can be used to exploit neuro-magnetic brain responses in a practical and flexible manner, and opens up new avenues for a wide range of new neural interface applications in the future.


Asunto(s)
Encéfalo , Magnetoencefalografía , Electroencefalografía , Humanos
13.
Neuroimage ; 241: 118401, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273527

RESUMEN

Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices - SQUIDs) for magnetoencephalography (MEG). With the promise of a wearable system that offers lifespan compliance, enables movement during scanning, and provides higher quality data, OPMs could drive a step change in MEG instrumentation. However, this potential can only be realised if background magnetic fields are appropriately controlled, via a combination of optimised passive magnetic screening (i.e. enclosing the system in layers of high-permeability materials), and electromagnetic coils to further null the remnant magnetic field. In this work, we show that even in an OPM-optimised passive shield with extremely low (<2 nT) remnant magnetic field, head movement generates significant artefacts in MEG data that manifest as low-frequency interference. To counter this effect we introduce a magnetic field mapping technique, in which the participant moves their head to sample the background magnetic field using a wearable sensor array; resulting data are compared to a model to derive coefficients representing three uniform magnetic field components and five magnetic field gradient components inside the passive shield. We show that this technique accurately reconstructs the magnitude of known magnetic fields. Moreover, by feeding the obtained coefficients into a bi-planar electromagnetic coil system, we were able to reduce the uniform magnetic field experienced by the array from a magnitude of 1.3±0.3 nT to 0.29±0.07 nT. Most importantly, we show that this field compensation generates a five-fold reduction in motion artefact at 0‒2 Hz, in a visual steady-state evoked response experiment using 6 Hz stimulation. We suggest that this technique could be used in future OPM-MEG experiments to improve the quality of data, especially in paradigms seeking to measure low-frequency oscillations, or in experiments where head movement is encouraged.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Visuales/fisiología , Movimientos de la Cabeza/fisiología , Campos Magnéticos , Magnetoencefalografía/métodos , Dispositivos Electrónicos Vestibles , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Dispositivos de Protección de la Cabeza , Humanos , Magnetoencefalografía/instrumentación , Magnetometría/instrumentación , Magnetometría/métodos
14.
Neuroimage ; 236: 118025, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838266

RESUMEN

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operate without cryogenics. This has led to a step change in instrumentation for magnetoencephalography (MEG), enabling a "wearable" scanner platform, adaptable to fit any head size, able to acquire data whilst subjects move, and offering improved data quality. Although many studies have shown the efficacy of 'OPM-MEG', one relatively untapped advantage relates to improved array design. Specifically, OPMs enable the simultaneous measurement of magnetic field components along multiple axes (distinct from a single radial orientation, as used in most conventional MEG systems). This enables characterisation of the magnetic field vector at all sensors, affording extra information which has the potential to improve source reconstruction. Here, we conduct a theoretical analysis of the critical parameters that should be optimised for effective source reconstruction. We show that these parameters can be optimised by judicious array design incorporating triaxial MEG measurements. Using simulations, we demonstrate how a triaxial array offers a dramatic improvement on our ability to differentiate real brain activity from sources of magnetic interference (external to the brain). Further, a triaxial system is shown to offer a marked improvement in the elimination of artefact caused by head movement. Theoretical results are supplemented by an experimental recording demonstrating improved interference reduction. These findings offer new insights into how future OPM-MEG arrays can be designed with improved performance.


Asunto(s)
Corteza Cerebral/fisiología , Fenómenos Magnéticos , Magnetoencefalografía/instrumentación , Magnetoencefalografía/métodos , Modelos Teóricos , Adulto , Artefactos , Simulación por Computador , Diseño de Equipo , Humanos , Campos Magnéticos , Masculino
15.
Neuroimage ; 230: 117815, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33524584

RESUMEN

Optically-pumped magnetometers (OPMs) offer the potential for a step change in magnetoencephalography (MEG) enabling wearable systems that provide improved data quality, accommodate any subject group, allow data capture during movement and potentially reduce cost. However, OPM-MEG is a nascent technology and, to realise its potential, it must be shown to facilitate key neuroscientific measurements, such as the characterisation of brain networks. Networks, and the connectivities that underlie them, have become a core area of neuroscientific investigation, and their importance is underscored by many demonstrations of their disruption in brain disorders. Consequently, a demonstration of network measurements using OPM-MEG would be a significant step forward. Here, we aimed to show that a wearable 50-channel OPM-MEG system enables characterisation of the electrophysiological connectome. To this end, we measured connectivity in the resting state and during a visuo-motor task, using both OPM-MEG and a state-of-the-art 275-channel cryogenic MEG device. Our results show that resting-state connectome matrices from OPM and cryogenic systems exhibit a high degree of similarity, with correlation values >70%. In addition, in task data, similar differences in connectivity between individuals (scanned multiple times) were observed in cryogenic and OPM-MEG data, again demonstrating the fidelity of the OPM-MEG device. This is the first demonstration of network connectivity measured using OPM-MEG, and results add weight to the argument that OPMs will ultimately supersede cryogenic sensors for MEG measurement.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Magnetoencefalografía/métodos , Magnetometría/métodos , Desempeño Psicomotor/fisiología , Dispositivos Electrónicos Vestibles , Adulto , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Femenino , Humanos , Magnetoencefalografía/instrumentación , Magnetometría/instrumentación , Masculino , Adulto Joven
16.
Neuroimage ; 219: 116995, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32480036

RESUMEN

Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extracranial magnetic fields generated by synchronised current in neuronal assemblies, however, such systems have fundamental limitations. In recent years, non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers (OPMs), in combination with novel techniques for accurate background magnetic field control, have promised to lift those restrictions offering an adaptable, motion-robust MEG system, with improved data quality, at reduced cost. However, OPM-MEG remains a nascent technology, and whilst viable systems exist, most employ small numbers of sensors sited above targeted brain regions. Here, building on previous work, we construct a wearable OPM-MEG system with 'whole-head' coverage based upon commercially available OPMs, and test its capabilities to measure alpha, beta and gamma oscillations. We design two methods for OPM mounting; a flexible (EEG-like) cap and rigid (additively-manufactured) helmet. Whilst both designs allow for high quality data to be collected, we argue that the rigid helmet offers a more robust option with significant advantages for reconstruction of field data into 3D images of changes in neuronal current. Using repeat measurements in two participants, we show signal detection for our device to be highly robust. Moreover, via application of source-space modelling, we show that, despite having 5 times fewer sensors, our system exhibits comparable performance to an established cryogenic MEG device. While significant challenges still remain, these developments provide further evidence that OPM-MEG is likely to facilitate a step change for functional neuroimaging.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diseño de Equipo , Neuroimagen Funcional/instrumentación , Dispositivos de Protección de la Cabeza , Magnetoencefalografía/instrumentación , Adulto , Femenino , Humanos , Masculino , Adulto Joven
17.
Neuroimage ; 199: 408-417, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31173906

RESUMEN

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR. Recently however, a new type of magnetoencephalography (MEG) device has been developed, that employs scalp-mounted optically-pumped magnetometers (OPMs) to measure brain electrophysiology. Lightweight OPMs, coupled with precise control of the background magnetic field, enables participant movement during data acquisition. Here, we exploit this technology to acquire MEG data whilst a participant uses a virtual reality head-mounted display (VRHMD). We show that, despite increased magnetic interference from the VRHMD, we were able to measure modulation of alpha-band oscillations, and the visual evoked field. Moreover, in a VR experiment in which a participant had to move their head to look around a virtual wall and view a visual stimulus, we showed that the measured MEG signals map spatially in accordance with the known organisation of primary visual cortex. This technique could transform the type of neuroscientific experiment that can be undertaken using functional neuroimaging.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiología , Potenciales Evocados Visuales/fisiología , Magnetoencefalografía/métodos , Realidad Virtual , Adulto , Humanos , Magnetoencefalografía/instrumentación , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...