Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 11474, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075102

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of FTLD cases. This mislocalisation from the nucleus into the cytoplasm and TDP-43 cleavage are associated with pathology, however, the drivers of these changes are unknown. p62 is invariably also present within these aggregates. We show that p62 overexpression causes TDP-43 mislocalisation into cytoplasmic aggregates, and aberrant TDP-43 cleavage that was dependent on both the PB1 and ubiquitin-associated (UBA) domains of p62. We further show that p62 overexpression induces neuron death. We found that stressors (proteasome inhibition and arsenic) increased p62 expression and that this shifted the nuclear:cytoplasmic TDP-43 ratio. Overall, our study suggests that environmental factors that increase p62 may thereby contribute to TDP-43 pathology in ALS and FTLD.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Agregado de Proteínas , Proteolisis , Proteína Sequestosoma-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Muerte Celular , Línea Celular , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Ratones , Ratones Noqueados , Proteína Sequestosoma-1/genética
2.
Mol Cell Neurosci ; 108: 103539, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32835772

RESUMEN

Mutations affecting SQSTM1 coding for p62 and TANK-Binding Kinase 1 (TBK1) have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TBK1 is a serine-threonine kinase that regulates p62's activity as an autophagy receptor via phosphorylation and also has roles in neuroinflammatory signalling pathways. The mechanisms underlying ALS and FTLD pathogenesis as a result of TBK1 mutations are incompletely understood, however, loss of TBK1 function can lead to dysregulated autophagy and mitophagy. Here, we report that an ALS-associated TBK1 variant affecting the kinase domain, p.G175S, is defective in phosphorylation of p62 at Ser-403, a modification critical for regulating its ubiquitin-binding function, as well as downstream phosphorylation at Ser-349. Consistent with these findings, expression of p.G175S TBK1 was associated with decreased induction of autophagy compared to wild type and reduced degradation of the ALS-linked protein TDP-43. Expression of wild type TBK1 increased NF-κB signalling ~300 fold in comparison to empty vector cells, whereas p.G175S TBK1 was unable to promote NF-κB signalling above levels observed in empty vector transfected cells. We also noted a hitherto unknown role for TBK1 as a suppressor of oxidative stress (Nrf2) signalling and show that p.G175S TBK1 expressing cells lose this inhibitory function. Our data suggest that TBK1 ALS mutations may broadly impair p62-mediated cell signalling, which ultimately may reduce neuronal survival, in addition TDP-43 was not efficiently degraded, together these effects may contribute to TBK1 mutation associated ALS and FTLD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Autofagia , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína Sequestosoma-1/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Transducción de Señal
3.
Mol Cell Neurosci ; 98: 32-45, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954537

RESUMEN

Elevated oxidative stress has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). In response to oxidative stress, the Nrf2 transcription factor activates protective antioxidant genes. A critical regulator of Nrf2 is the inhibitory protein Keap1, which mediates Nrf2 degradation. In response to cellular stress an interaction between Keap1 and SQSTM1/p62 (p62), a signalling adaptor protein, allows for increased Nrf2 signalling as it escapes degradation. Mutations in SQSTM1 (encoding p62) are linked with ALS-FTLD. Previously, two ALS-FTLD-associated p62 mutant proteins within the Keap1 interacting region (KIR) of p62 were found to be associated with decreased Keap1-p62 binding and Nrf2 activation. Here we report that a non-KIR domain FTLD-associated variant of p62 (p.R110C), affecting a residue close to the N-terminal PB1 oligomerisation domain, also reduces Keap1-p62 binding in cellulo and thereby reduces Nrf2 activity in reporter assays. Further, we observed that expression of p.R110C increased NF-κB activation compared with wild type p62. Altered signalling appeared to be linked with reduced phosphorylation of p62 at Serine residues -349 and -403. Our results confirm that ALS-FTLD mutations affecting multiple domains of p62 result in a reduced stress response, suggesting that altered stress signalling may directly contribute to the pathology of some ALS-FTLD cases.


Asunto(s)
Degeneración Lobar Frontotemporal/genética , Mutación Missense , Estrés Oxidativo , Proteína Sequestosoma-1/genética , Transducción de Señal , Animales , Sitios de Unión , Línea Celular , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Fosforilación , Unión Proteica , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/metabolismo
4.
Bone Rep ; 10: 100198, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30886882

RESUMEN

Paget's disease of bone (PDB) has a strong genetic component. Variants in SQSTM1 are found in up to 40% of patients with a family history of the disease, where a pattern of autosomal dominance with incomplete penetrance is apparent. By contrast, SQSTM1 variants are only found in up to 10% of patients with sporadic disease. It has been hypothesised that the remaining genetic susceptibility to PDB, particularly in familial cases, could be explained by rare genetic variants in loci previously identified by Genome Wide Association Studies. It is likely that polygenic factors are involved in many individuals. In this study we utilised whole exome sequencing to investigate predisposing genetic factors in an unsolved PDB kindred and identified a c.1189C > T p.L397F variant in DC-STAMP, also known as TM7SF4, that co-segregated with disease. DCSTAMP was identified as a gene of interest in PDB following Genome Wide Association Studies and has been previously shown to play critical roles in osteoclast fusion. The variant we identified has also been reported in association with PDB in a French-Canadian cohort however the significance of this variant was inconclusive. Targeted screening of DCSTAMP in our familial cohort of PDB patients revealed an additional 8 variants; however we did not find a significant association between any of these, including p.L397F, with PDB. Osteoclastogenesis assays from the affected proband and his unaffected brother demonstrated an increase in osteoclast number and nucleation, consistent with the pagetic phenotype. In converse to other established Paget's associated genetic variations such as SQSTM1, TNFRSF11A and OPTN, expression of the mutant DC-STAMP protein attenuated the activation of transcription factors NFκB and AP-1 when exogenously expressed. We found that the p.L397F variant did not influence the subcellular localization of the protein. Based on these findings we conclude that genetic variation in DCSTAMP is not a significant predisposing factor in our specific cohort of PDB patients and the p.L397F variant is unlikely to be a contributing factor in PDB pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...