Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Mhealth Uhealth ; 5(3): e37, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341616

RESUMEN

BACKGROUND: The increasing ownership of smartphones provides major opportunities for epidemiological research through self-reported and passively collected data. OBJECTIVE: This pilot study aimed to codesign a smartphone app to assess associations between weather and joint pain in patients with rheumatoid arthritis (RA) and to study the success of daily self-reported data entry over a 60-day period and the enablers of and barriers to data collection. METHODS: A patient and public involvement group (n=5) and 2 focus groups of patients with RA (n=9) supported the codesign of the app collecting self-reported symptoms. A separate "capture app" was designed to collect global positioning system (GPS) and continuous raw accelerometer data, with the GPS-linking providing local weather data. A total of 20 patients with RA were then recruited to collect daily data for 60 days, with entry and exit interviews. Of these, 17 were loaned an Android smartphone, whereas 3 used their own Android smartphones. RESULTS: Of the 20 patients, 6 (30%) withdrew from the study: 4 because of technical challenges and 2 for health reasons. The mean completion of daily entries was 68% over 2 months. Patients entered data at least five times per week 65% of the time. Reasons for successful engagement included a simple graphical user interface, automated reminders, visualization of data, and eagerness to contribute to this easily understood research question. The main barrier to continuing engagement was impaired battery life due to the accelerometer data capture app. For some, successful engagement required ongoing support in using the smartphones. CONCLUSIONS: This successful pilot study has demonstrated that daily data collection using smartphones for health research is feasible and achievable with high levels of ongoing engagement over 2 months. This result opens important opportunities for large-scale longitudinal epidemiological research.

2.
Nanomedicine ; 13(2): 667-679, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27553075

RESUMEN

Targeted drug delivery within the nervous system is an emerging topic of research that involves designing and developing vehicular delivery systems that have the ability to target specific neuronal and non-neuronal cell types in the central and peripheral nervous system. Drugs, genetic material, or any other payloads can be loaded onto such delivery systems and could be used to treat, prevent or manage various neurological disorders. Currently, majority of studies in this field have been concentrated around targeted delivery to neurons. However, the non-neuronal cells within the nervous system, collectively called neuroglia, have been largely ignored, though it is well known that they play a significant role in the pathophysiology of almost all neurological disorders. In this review, we present current developments in the specific area of neuroglia targeted delivery systems and highlight the use of polymeric, metallic, liposomal and other delivery systems used for this purpose.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neuroglía , Humanos , Liposomas , Nanopartículas del Metal , Enfermedades del Sistema Nervioso , Neuronas , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA