Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAC Antimicrob Resist ; 6(2): dlae036, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476774

RESUMEN

Background: It is important to optimize dosing schemes of antibiotics to maximize the probability of therapeutic success. The recommended pharmacokinetic/pharmacodynamic (PK/PD) index for piperacillin/tazobactam therapy in clinical studies ranges widely (50%-100% fT>1-4×MIC). Dosing schemes failing to achieve PK/PD targets may lead to negative treatment outcomes. Objectives: The first aim of this study was to define the optimal PK/PD index of piperacillin/tazobactam with a hollow-fibre infection model (HFIM). The second aim was to predict whether these PK/PD targets are currently achieved in critically ill patients through PK/PD model simulation. Patients and methods: A dose-fractionation study comprising 21 HFIM experiments was performed against a range of Gram-negative bacterial pathogens, doses and infusion times. Clinical data and dose histories from a case series of nine patients with a known bacterial infection treated with piperacillin/tazobactam in the ICU were collected. The PK/PD index and predicted plasma concentrations and therefore target attainment of the patients were simulated using R version 4.2.1. Results: fT >MIC was found to be the best-fitting PK/PD index for piperacillin/tazobactam. Bactericidal activity with 2 log10 cfu reduction was associated with 77% fT>MIC. Piperacillin/tazobactam therapy was defined as clinically 'ineffective' in ∼78% (7/9) patients. Around seventy-one percent (5/7) of these patients had a probability of >10% that 2  log10 cfu reduction was not attained. Conclusions: Our dose-fractionation study indicates an optimal PK/PD target in piperacillin/tazobactam therapies should be 77% fT>MIC for 2 log10 kill. Doses to achieve this target should be considered when treating patients in ICU.

2.
Vaccines (Basel) ; 11(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36851129

RESUMEN

Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.

3.
J Antimicrob Chemother ; 78(1): 8-20, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36411255

RESUMEN

Conventional cell culture systems involve growing cells in stationary cultures in the presence of growth medium containing various types of supplements. At confluency, the cells are divided and further expanded in new culture dishes. This passage from confluent monolayer to sparse cultures does not reflect normal physiological conditions and represents quite a drastic physiological change that may affect the natural cell physiobiology. Hollow-fibre bioreactors were in part developed to overcome these limitations and since their inception, they have widely been used in production of monoclonal antibodies and recombinant proteins. These bioreactors are increasingly used to study antibacterial drug effects via simulation of in vivo pharmacokinetic profiles. The use of the hollow-fibre infection model (HFIM) in viral infection studies is less well developed and in this review we have analysed and summarized the current available literature on the use of these bioreactors, with an emphasis on viruses. Our work has demonstrated that this system can be applied for viral expansion, studies of drug resistance mechanisms, and studies of pharmacokinetic/pharmacodynamic (PK/PD) of antiviral compounds. These platforms could therefore have great applications in large-scale vaccine development, and in studies of mechanisms driving antiviral resistance, since the HFIM could recapitulate the same resistance mechanisms and mutations observed in vivo in clinic. Furthermore, some dosage and spacing regimens evaluated in the HFIM system, as allowing maximal viral suppression, are in line with clinical practice and highlight this 'in vivo-like' system as a powerful tool for experimental validation of in vitro-predicted antiviral activities.


Asunto(s)
Antibacterianos , Virosis , Humanos , Antibacterianos/farmacología , Antivirales/farmacocinética , Modelos Biológicos , Virosis/tratamiento farmacológico
4.
J Antimicrob Chemother ; 77(2): 448-456, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35107141

RESUMEN

OBJECTIVES: This study aimed to simultaneously investigate the pharmacokinetics of ampicillin and gentamicin, currently the WHO standard of care for treating neonatal sepsis. METHODS: Pharmacokinetic data were collected in 59 neonates receiving ampicillin and gentamicin for suspected or proven sepsis in the NeoFosfo trial (NCT03453177). A panel of 23 clinical Escherichia coli isolates from neonates with sepsis, resistant to either ampicillin, gentamicin or both, were tested for susceptibility using chequerboards. Pharmacokinetic/pharmacodynamic (PKPD) modelling and simulations were used to compare single-agent (EUCAST MIC) and combination (chequerboard MIC) target attainment with standard dosing regimens. RESULTS: A model was established that simultaneously estimated parameters of a one-compartment ampicillin model and a two-compartment gentamicin model. A common clearance for both drugs was used (6.89 L/h/70 kg) relating to glomerular filtration (CLGFR), with an additional clearance term added for ampicillin (5.3 L/h/70 kg). Covariate modelling included a priori allometric weight and post-menstrual age scaling of clearance. Further covariate relationships on renal clearance were postnatal age and serum creatinine.Simulation-based PKPD assessments suggest good Gram-positive (MIC ≤ 0.25 mg/L) cover. However, less than one-quarter of neonates were predicted to receive efficacious coverage against Enterobacterales (MIC ≤ 2 mg/L). The benefit of the ampicillin/gentamicin combination was limited, with only 2/23 E. coli clinical strains showing FIC index < 0.5 (synergy) and most in the range 0.5-1 (suggesting additivity). Simulations showed that feasible dosing strategies would be insufficient to cover resistant strains. CONCLUSIONS: PKPD simulations showed ampicillin and gentamicin combination therapy was insufficient to cover Enterobacterales, suggesting the need for alternative empirical treatment options for neonatal sepsis.


Asunto(s)
Sepsis Neonatal , Sepsis , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Humanos , Recién Nacido , Sepsis Neonatal/tratamiento farmacológico , Sepsis/tratamiento farmacológico
5.
J Antimicrob Chemother ; 76(9): 2252-2259, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34179966

RESUMEN

OBJECTIVES: This systematic review focuses on the use of the in vitro hollow fibre infection model (HFIM) for microbial culture. We summarize the direction of the field to date and propose best-practice principles for reporting of the applications. METHODS: Searches in six databases (MEDLINE®, EMBASE®, PubMed®, BIOSIS®, SCOPUS® and Cochrane®) up to January 2020 identified 129 studies meeting our inclusion criteria. Two reviewers independently assessed and extracted data from each publication. The quality of reporting of microbiological and technical parameters was analysed. RESULTS: Forty-seven out of 129 (36.4%) studies did not report the minimum pharmacokinetic parameters required in order to replicate the pharmacokinetic profile of HFIM experiments. Fifty-three out of 129 (41.1%) publications did not report the medium used in the HFIM. The overwhelming majority of publications did not perform any technical repeats [107/129 (82.9%)] or biological repeats [97/129 (75.2%)]. CONCLUSIONS: This review demonstrates that most publications provide insufficient data to allow for results to be evaluated, thus impairing the reproducibility of HFIM experiments. Therefore, there is a clear need for the development of laboratory standardization and improved reporting of HFIM experiments.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antiinfecciosos/farmacología , Estándares de Referencia , Reproducibilidad de los Resultados
6.
Nucleic Acid Ther ; 27(3): 176-181, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28080251

RESUMEN

The bacterial cell wall presents a barrier to the uptake of unmodified synthetic antisense oligonucleotides, such as peptide nucleic acids, and so is one of the greatest obstacles to the development of their use as therapeutic anti-bacterial agents. Cell-penetrating peptides have been covalently attached to antisense agents, to facilitate penetration of the bacterial cell wall and deliver their cargo into the cytoplasm. Although they are an effective vector for antisense oligonucleotides, they are not specific for bacterial cells and can exhibit growth inhibitory properties at higher doses. Using a bacterial cell growth assay in the presence of cefotaxime (CTX 16 mg/L), we have developed and evaluated a self-assembling non-toxic DNA tetrahedron nanoparticle vector incorporating a targeted anti-blaCTX-M-group 1 antisense peptide nucleic acid (PNA4) in its structure for penetration of the bacterial cell wall. A dose-dependent CTX potentiating effect was observed when PNA4 (0-40 µM) was incorporated into the structure of a DNA tetrahedron vector. The minimum inhibitory concentration (to CTX) of an Escherichia coli field isolate harboring a plasmid carrying blaCTX-M-3 was reduced from 35 to 16 mg/L in the presence of PNA4 carried by the DNA tetrahedron vector (40 µM), contrasting with no reduction in MIC in the presence of PNA4 alone. No growth inhibitory effects of the DNA tetrahedron vector alone were observed.


Asunto(s)
Péptidos de Penetración Celular/farmacología , ADN de Cadena Simple/farmacología , Proteínas de Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Ácidos Nucleicos de Péptidos/farmacología , beta-Lactamasas/efectos de los fármacos , Antibacterianos/farmacología , Cefotaxima/farmacología , Pared Celular/química , ADN de Cadena Simple/química , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/tendencias , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Oligonucleótidos Antisentido/química , Ácidos Nucleicos de Péptidos/química , Plásmidos/química
7.
Front Microbiol ; 7: 373, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047482

RESUMEN

Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and -17 to -5, respectively) close to the translational initiation site of the extended-spectrum ß-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit ß-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a bla CTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 ß-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of bla CTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...